Flare differentially rotates sunspot on Sun's surface

Chang Liu, Yan Xu, Wenda Cao, Na Deng, Jeongwoo Lee, Hugh S. Hudson, Dale Gary, Jiasheng Wang, Ju Jing, Haimin Wang

Research output: Contribution to journalArticlepeer-review

42 Scopus citations

Abstract

Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ∼50° h -1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena.

Original languageEnglish (US)
Article number13104
JournalNature communications
Volume7
DOIs
StatePublished - Oct 10 2016

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Flare differentially rotates sunspot on Sun's surface'. Together they form a unique fingerprint.

Cite this