Abstract
Piezoelectric nanomaterial-polymer composites represent a unique paradigm for making flexible energy harvesting and sensing devices with enhanced devices’ performance. In this work, we studied various metal doped ZnO nanostructures, fabricated and characterized ZnO nanoparticle-PVDF composite thin film, and demonstrated both enhanced energy generation and motion sensing capabilities. Specifically, a series of flexible piezoelectric nanogenerators (PENGs) were designed based on these piezoelectric composite thin films. The voltage output from cobalt (Co), sodium (Na), silver (Ag), and lithium (Li) doped ZnO-PVDF composite as well as pure ZnO-PVDF samples were individually studied and compared. Under the same experimental conditions, the Li-ZnO based device produces the largest peak-to-peak voltage (3.43 Vpp) which is about 9 times of that of the pure ZnO based device, where Co-ZnO, Na-ZnO and Ag-ZnO are 1.2, 4.9 and 5.4 times, respectively. In addition, the effect of doping ratio of Li-ZnO is studied, and we found that 5 % is the best doping ratio in terms of output voltage. Finally, we demonstrated that the energy harvested by the device from finger tapping at ∼2 Hz can charge a capacitor with a large output power density of 0.45 W/cm3 and light up an ultraviolet (UV) light-emitting diode (LED). We also showed the device as a flexible wearable motion sensor, where different hand gestures were detected by the device with distinctive output voltage amplitudes and patterns.
Original language | English (US) |
---|---|
Article number | 111912 |
Journal | Sensors and Actuators, A: Physical |
Volume | 305 |
DOIs | |
State | Published - Apr 15 2020 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering
Keywords
- Flexible energy harvester
- Metal doping
- PVDF
- Piezoelectric
- Sensor
- ZnO