Fluid flows created by swimming bacteria drive self-organization in confined suspensions

Enkeleida Lushi, Hugo Wioland, Raymond E. Goldstein

Research output: Contribution to journalArticlepeer-review

281 Scopus citations


Concentrated suspensions of swimming microorganisms and other forms of active matter are known to display complex, self-organized spatiotemporal patterns on scales that are large compared with those of the individual motile units. Despite intensive experimental and theoretical study, it has remained unclear the extent to which the hydrodynamic flows generated by swimming cells, rather than purely steric interactions between them, drive the self-organization. Here we use the recent discovery of a spiral-vortex state in confined suspensions of Bacillus subtilis to study this issue in detail. Those experiments showed that if the radius of confinement in a thin cylindrical chamber is below a critical value, the suspension will spontaneously form a steady single-vortex state encircled by a counter-rotating cell boundary layer, with spiral cell orientation within the vortex. Left unclear, however, was the flagellar orientation, and hence the cell swimming direction, within the spiral vortex. Here, using a fast simulation method that captures oriented cell-cell and cell-fluid interactions in a minimal model of discrete particle systems, we predict the striking, counterintuitive result that in the presence of collectively generated fluid motion, the cells within the spiral vortex actually swim upstream against those flows. This prediction is then confirmed by the experiments reported here, which include measurements of flagella bundle orientation and cell tracking in the self-organized state. These results highlight the complex interplay between cell orientation and hydrodynamic flows in concentrated suspensions of microorganisms.

Original languageEnglish (US)
Pages (from-to)9733-9738
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number27
StatePublished - Jul 8 2014
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Fluid flows created by swimming bacteria drive self-organization in confined suspensions'. Together they form a unique fingerprint.

Cite this