Fluidized bed film coating of cohesive Geldart group C powders

Yuhua Chen, Jun Yang, Ajit Mujumdar, Rajesh Dave

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

The difficulty of coating cohesive Geldart group C powders in a conventional fluidized bed is attributed to strong inter-particle force between fine particles leading to poor fluidization behavior. Dry coating approach involving deposition of nanosize particles on the surface of group C powders is considered to reduce the interparticle force and improve the fluidization behavior of fine powders. Polymer film coating at an individual particle level is achieved on these pre-coated fine powders in a commercially available spouting fluidized bed (MiniGlatt). The effect of operating conditions such as inlet air temperature, polymer concentration, polymer weight ratio, water percentage in solvent and spray rate of coating solution on the quality of film coating are investigated. Experimental results demonstrate that the quality of film coating goes down as polymer concentration in coating solution goes higher, whereas the lower inlet air temperature is found to enhance polymer film generation and coating quality. It is also observed that the higher polymer weight ratio promotes agglomeration without affecting the coating quality to a great extent. An optimum water ratio in acetone-water solvent as well as spray rate can be optimized to achieve superior coating quality with acceptable agglomeration ratio. Graphical abstract: Dry coating approach involving deposition of nanosize particles on the surface of group C powders is considered to reduce the interparticle force and improve the fluidization behavior of fine powders. Polymer film coating at an individual particle level is achieved on these pre-coated fine powders in a commercially available spouting fluidized bed (MiniGlatt). The effect of operating conditions such as inlet air temperature, polymer concentration, polymer weight ratio, water percentage in solvent and spray rate of coating solution on the quality of film coating are investigated. Experimental results demonstrate that the quality of film coating goes down as polymer concentration in coating solution goes higher, whereas the lower inlet air temperature is found to enhance polymer film generation and coating quality.{A figure is presented}. Figure: SEM images of Aluminum-1 particles coated to investigate the effect of polymer concentration. (a, b) Spray rate 2.11 ml/min, polymer concentration 4%, inlet air temperature 40 °C, polymer weight ratio 4% and water in solvent 0%; (c, d) spray rate 2.11 ml/min, polymer concentration 16%, inlet air temperature 40 °C, polymer weight ratio 4% and water in solvent 0%.

Original languageEnglish (US)
Pages (from-to)466-480
Number of pages15
JournalPowder Technology
Volume189
Issue number3
DOIs
StatePublished - Feb 13 2009

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)

Keywords

  • Cohesive powders
  • Dry coating
  • Fluidized bed
  • Nano-silica
  • Nanoparticle coating
  • Polymer film coating

Fingerprint

Dive into the research topics of 'Fluidized bed film coating of cohesive Geldart group C powders'. Together they form a unique fingerprint.

Cite this