TY - JOUR
T1 - Fluorene-based metal-ion sensing probe with high sensitivity to Zn 2+ and efficient two-photon absorption
AU - Belfield, Kevin D.
AU - Bondar, Mykhailo V.
AU - Frazer, Andrew
AU - Morales, Alma R.
AU - Kachkovsky, Oleksiy D.
AU - Mikhailov, Ivan A.
AU - Masunov, Artëm E.
AU - Przhonska, Olga V.
PY - 2010/7/22
Y1 - 2010/7/22
N2 - The photophysical, photochemical, two-photon absorption (2PA) and metal ion sensing properties of a new fluorene derivative (E)-1-(7-(4-(benzo[d]thiazol-2- yl)styryl)-9,9-bis(2-(2-ethoxyethoxy)ethyl)-9H-fluoren-2-yl)-3-(2-(9,10,16,17, 18,19,21,22,23,24-decahydro-6H dibenzo[h,s][1,4,7,11,14,17] trioxatriazacycloicosin-20(7H)-yl)ethyl)thiourea (1) were investigated in organic and aqueous media. High sensitivity and selectivity of 1 to Zn 2+ in tetrahydrofuran and a water/acetonitrile mixture were shown by both absorption and fluorescence titration. The observed complexation processes corresponded to 1:1 stoichiometry with the range of binding constants ∼(2-3) - 105 M-1. The degenerate 2PA spectra of 1 and 1/Zn 2+ complex were obtained in the 640-900 nm spectral range with the maximum values of two-photon action cross section for ligand/metal complex ∼(90-130) GM, using a standard two-photon induced fluorescence methodology under femtosecond excitation. The nature of the 2PA bands was analyzed by quantum chemical methods and a specific dependence on metal ion binding processes was shown. Ratiometric fluorescence detection (420/650 nm) provided a good dynamic range (10-4 to 10-6 M) for detecting Zn 2+, which along with the good photostability and 2PA properties of probe 1 makes it a good candidate in two-photon fluorescence microscopy imaging and sensing of Zn ions.
AB - The photophysical, photochemical, two-photon absorption (2PA) and metal ion sensing properties of a new fluorene derivative (E)-1-(7-(4-(benzo[d]thiazol-2- yl)styryl)-9,9-bis(2-(2-ethoxyethoxy)ethyl)-9H-fluoren-2-yl)-3-(2-(9,10,16,17, 18,19,21,22,23,24-decahydro-6H dibenzo[h,s][1,4,7,11,14,17] trioxatriazacycloicosin-20(7H)-yl)ethyl)thiourea (1) were investigated in organic and aqueous media. High sensitivity and selectivity of 1 to Zn 2+ in tetrahydrofuran and a water/acetonitrile mixture were shown by both absorption and fluorescence titration. The observed complexation processes corresponded to 1:1 stoichiometry with the range of binding constants ∼(2-3) - 105 M-1. The degenerate 2PA spectra of 1 and 1/Zn 2+ complex were obtained in the 640-900 nm spectral range with the maximum values of two-photon action cross section for ligand/metal complex ∼(90-130) GM, using a standard two-photon induced fluorescence methodology under femtosecond excitation. The nature of the 2PA bands was analyzed by quantum chemical methods and a specific dependence on metal ion binding processes was shown. Ratiometric fluorescence detection (420/650 nm) provided a good dynamic range (10-4 to 10-6 M) for detecting Zn 2+, which along with the good photostability and 2PA properties of probe 1 makes it a good candidate in two-photon fluorescence microscopy imaging and sensing of Zn ions.
UR - http://www.scopus.com/inward/record.url?scp=77954711233&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77954711233&partnerID=8YFLogxK
U2 - 10.1021/jp104450m
DO - 10.1021/jp104450m
M3 - Article
C2 - 20590077
AN - SCOPUS:77954711233
SN - 1520-6106
VL - 114
SP - 9313
EP - 9321
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 28
ER -