Fog-Based Detection for Random-Access IoT Networks with Per-Measurement Preambles

Rahif Kassab, Osvaldo Simeone, Petar Popovski

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Internet of Things (IoT) systems may be deployed to monitor spatially distributed quantities of interests (QoIs), such as noise or pollution levels. This paper considers a fog-based IoT network, in which active IoT devices transmit measurements of the monitored QoIs to the local edge node (EN), while the ENs are connected to a cloud processor via limited-capacity fronthaul links. While the conventional approach uses preambles as metadata for reserving communication resources, here we consider assigning preambles directly to measurement levels across all devices. The resulting Type-Based Multiple Access (TBMA) protocol enables the efficient remote detection of the QoIs, rather than of the individual payloads. The performance of both edge and cloud-based detection or hypothesis testing is evaluated in terms of error exponents. Cloud-based hypothesis testing is shown theoretically and via numerical results to be advantageous when the intercell interference power and the fronthaul capacity are sufficiently large.

Original languageEnglish (US)
Title of host publication2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728154787
DOIs
StatePublished - May 2020
Externally publishedYes
Event21st IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2020 - Atlanta, United States
Duration: May 26 2020May 29 2020

Publication series

NameIEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC
Volume2020-May

Conference

Conference21st IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2020
CountryUnited States
CityAtlanta
Period5/26/205/29/20

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Computer Science Applications
  • Information Systems

Keywords

  • Fog-RAN
  • Hypothesis Testing
  • IoT
  • Random Access

Fingerprint Dive into the research topics of 'Fog-Based Detection for Random-Access IoT Networks with Per-Measurement Preambles'. Together they form a unique fingerprint.

Cite this