Forward Modeling of Particle Acceleration and Transport in an Individual Solar Flare

Mykola Gordovskyy, Philippa K. Browning, Satoshi Inoue, Eduard P. Kontar, Kanya Kusano, Grigory E. Vekstein

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

The aim of this study is to generate maps of the hard X-ray emission produced by energetic electrons in a solar flare and compare them with observations. The ultimate goal is to test the viability of the combined MHD/test-particle approach for data-driven modeling of active events in the solar corona and their impact on the heliosphere. Based on an MHD model of X-class solar flare observed on 2017 September 8, we calculate trajectories of a large number of electrons and protons using the relativistic guiding-center approach. Using the obtained particle trajectories, we deduce the spatial and energy distributions of energetic electrons and protons, and calculate bremsstrahlung hard X-ray emission using the "thin-target"approximation. Our approach predicts some key characteristics of energetic particles in the considered flare, including the size and location of the acceleration region, energetic particle trajectories and energy spectra. Most importantly, the hard X-ray bremsstrahlung intensity maps predicted by the model are in good agreement with those observed by RHESSI. Furthermore, the locations of proton and electron precipitation appear to be close to the sources of helioseismic response detected in this flare. Therefore, the adopted approach can be used for observationally driven modeling of individual solar flares, including manifestations of energetic particles in the corona, as well as the inner heliosphere.

Original languageEnglish (US)
Article number147
JournalAstrophysical Journal
Volume902
Issue number2
DOIs
StatePublished - Oct 20 2020
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Forward Modeling of Particle Acceleration and Transport in an Individual Solar Flare'. Together they form a unique fingerprint.

Cite this