Fractal geometry modeling with applications in surface characterisation and wear prediction

G. Zhou, M. Leu, D. Blackmore

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Manufactured surfaces such as those produced by electrical discharge machining, waterjet cutting and ion-nitriding coating can be characterized by fractal geometry. A modified Gaussian random fractal model coupled with structure functions is used to relate surface topography with fractal geometry via fractal geometry via fractal dimension (D) and topothesy (L). This fractal characterization of surface topography complements and improves conventional statistical and random process methods of surface characterization, Our fractal model for surface topography is shown to predict a primary relationship between D and the bearing area curve, while L affects this curve to a smaller degree. A fractal geometry model for wear prediction is proposed, which predicts the wear rate in terms of these two fractal parameters. Using this model we show that the wear rate Vr and the true contact area Ar have the relationship Vrα (Ar)m(D), where m(D) is a function of D and has a value between 0.5 and 1. We next study the optimum (ie the lowest wear rate) fractal diemsnsion in a wear process. It is found that the optimum fractal dimension is affected by the contact area, material properties, and scale amplitude. Experimental results of bearing area curves and wear testing show good agreement with the two models.

Original languageEnglish (US)
Pages (from-to)203-209
Number of pages7
JournalInternational Journal of Machine Tools and Manufacture
Volume35
Issue number2
DOIs
StatePublished - Feb 1995

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Fractal geometry modeling with applications in surface characterisation and wear prediction'. Together they form a unique fingerprint.

Cite this