Frequency control of a slow oscillatory network by a fast rhythmic input: Pyloric to gastric mill interactions in the crab stomatogastric nervous system

Eve Marder, Yair Manor, Farzan Nadim, Marlene Bartos, Michael P. Nusbaum

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

The stomatogastic nervous system of the crab, Cancer borealis, produces a slow gastric mill rhythm and a fast pyloric rhythm. When the gastric mill rhythm is not active, stimulation of the modulatory commissural ganglion neuron 1 (MCN1) activates a gastric mill rhythm in which the lateral gastric (LG) neuron fires in antiphase with interneuron 1 (Int1). We present theoretical and experimental data that indicate that the period of the MCN1 activated gastric mill rhythm depends on the strength and time course of the MCN1 evoked slow excitatory synaptic potential (EPSP) in the LG neuron, and on the strength of inhibition of Int 1 by the pacemaker of the pyloric network. This work demonstrates a new mechansim by which a slow network oscillator can be controlled by a much faster oscillatory neuron or network and suggests that modulation of the slow oscillator can occur by direct actions on the neurons and synapses of the slow oscillator, or indirectly by actions on the fast oscillator and its synaptic connection with the slow oscillator.

Original languageEnglish (US)
Pages (from-to)226-238
Number of pages13
JournalAnnals of the New York Academy of Sciences
Volume860
DOIs
StatePublished - 1998
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • History and Philosophy of Science

Fingerprint

Dive into the research topics of 'Frequency control of a slow oscillatory network by a fast rhythmic input: Pyloric to gastric mill interactions in the crab stomatogastric nervous system'. Together they form a unique fingerprint.

Cite this