TY - GEN
T1 - Frequency Dependence of Shear Wave Velocity in Stroke-Affected Muscles during Isometric Contraction- Preliminary Data
AU - Saadat, Fatemeh
AU - Son, Jongsang
AU - Rymer, William Z.
AU - Lee, Sabrina S.M.
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/10/26
Y1 - 2018/10/26
N2 - In addition to changes in the central nervous system, many changes can occur in the composition and structure of skeletal muscles after a hemispheric stroke. The mechanical behavior of skeletal muscles is linked to the density and structural arrangement of key constituents. Yet, little is known about changes in post-stroke muscle mechanical properties such as viscoelasticity. The aim of this study was to explore the frequency-dependent changes in shear wave (SW) velocity as a potentially informative feature accompanying changes in muscle viscoelastic properties under passive and active conditions in hemiplegic stroke. We used the ultrasound SuperSonic Imaging technique to induce and measure SW propagation in the biceps brachii muscle for both the paretic and contralateral limbs in three hemiplegic stroke survivors during passive and submaximal voluntary muscle contractions. We found that for all subjects, the muscles on both the paretic and non-paretic sides demonstrated large dispersion (i.e., a change in SW phase velocities as a function of frequency within each contraction level) under both passive and active conditions, although muscles on the paretic side displayed larger dispersion. In addition, for a range of frequencies from 108-756 Hz, the SW phase velocity was higher in active nonparetic muscles compared to those of paretic side with an increase of 42% at 756 Hz. This is in contrast with the muscle response under passive condition where the SW phase velocity exhibited a 97 % increase at 765Hz on the paretic side compared to the non-paretic side. These results suggest the mechanical properties are altered for stroke-affected muscles, which may be a result of changes in the muscle extracellular matrix composition. Further, this study provides evidence that there are changes in tissue mechanical properties and that may consequently influence muscle function.
AB - In addition to changes in the central nervous system, many changes can occur in the composition and structure of skeletal muscles after a hemispheric stroke. The mechanical behavior of skeletal muscles is linked to the density and structural arrangement of key constituents. Yet, little is known about changes in post-stroke muscle mechanical properties such as viscoelasticity. The aim of this study was to explore the frequency-dependent changes in shear wave (SW) velocity as a potentially informative feature accompanying changes in muscle viscoelastic properties under passive and active conditions in hemiplegic stroke. We used the ultrasound SuperSonic Imaging technique to induce and measure SW propagation in the biceps brachii muscle for both the paretic and contralateral limbs in three hemiplegic stroke survivors during passive and submaximal voluntary muscle contractions. We found that for all subjects, the muscles on both the paretic and non-paretic sides demonstrated large dispersion (i.e., a change in SW phase velocities as a function of frequency within each contraction level) under both passive and active conditions, although muscles on the paretic side displayed larger dispersion. In addition, for a range of frequencies from 108-756 Hz, the SW phase velocity was higher in active nonparetic muscles compared to those of paretic side with an increase of 42% at 756 Hz. This is in contrast with the muscle response under passive condition where the SW phase velocity exhibited a 97 % increase at 765Hz on the paretic side compared to the non-paretic side. These results suggest the mechanical properties are altered for stroke-affected muscles, which may be a result of changes in the muscle extracellular matrix composition. Further, this study provides evidence that there are changes in tissue mechanical properties and that may consequently influence muscle function.
UR - http://www.scopus.com/inward/record.url?scp=85056571230&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056571230&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2018.8512857
DO - 10.1109/EMBC.2018.8512857
M3 - Conference contribution
C2 - 30440864
AN - SCOPUS:85056571230
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 2292
EP - 2295
BT - 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
Y2 - 18 July 2018 through 21 July 2018
ER -