Friction model using full elastohydrodynamic lubrication for spiral bevel gears

Srikumar C. Gopalakrishnan, Yawen Wang, Teik C. Lim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Elastohydrodynamic lubrication phenomenon in spiral bevel gears was modeled in this study. The coefficient of friction calculated from the elastohydrodynamic (EHL) lubrication model is time varying. Friction is expected to have a greater impact on the spiral bevel gears than on any other right angled geared system due to the reversal of the contact area over a full tooth-to-tooth engagement cycle. The coefficient of friction formulated from an EHL model of spiral bevel gears depends upon lubricant properties, mesh forces and rotational speeds of the pinion and gear. Hence in this present study, a full elastohydrodynamic lubrication model was used to calculate the coefficient of friction in spiral bevel gears. The geometric and kinematic input data required for the EHL simulations were obtained from tooth contact analysis. Full numerical elastohydrodynamic lubrication simulations were carried out using the asymmetric integrated control volume (AICV) algorithm to compute the contact pressures and the coefficient of friction. The elastic deformations on the gear contact surfaces were calculated by circular convolution using a Fourier transform technique. The computed pressures, film thickness and the effective viscosity were used to calculate the time varying coefficient of friction for the spiral bevel gears. Parametric studies were conducted by varying the speed, torque applied, lubricant properties, temperature and slide to roll ratio to identify their impact on the time varying coefficient of friction.

Original languageEnglish (US)
Title of host publication2017 ASME International Power Transmission and Gearing Conference
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858240
DOIs
StatePublished - 2017
Externally publishedYes
EventASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017 - Cleveland, United States
Duration: Aug 6 2017Aug 9 2017

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume10

Conference

ConferenceASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2017
Country/TerritoryUnited States
CityCleveland
Period8/6/178/9/17

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Science Applications
  • Modeling and Simulation

Fingerprint

Dive into the research topics of 'Friction model using full elastohydrodynamic lubrication for spiral bevel gears'. Together they form a unique fingerprint.

Cite this