TY - GEN
T1 - Functional nanomaterials to lower the operation temperatures for H2 production from various bio-alcohols
AU - He, Zhong
AU - Wang, Xianqin
PY - 2009
Y1 - 2009
N2 - Nowadays, over 90% H2 is still produced from steam reforming of natural gas. This process requires high temperature operation. Moreover, the natural gas is mostly provided from fossil fuel resources. In order to minimize the environmental impact, hydrogen produced from biomass resource has been a critical issue to the Department of Energy (DOE) in USA and abroad. The synthesis of functional nanomaterials offers a unique opportunity to make the breakthrough discoveries and truly revolutionary developments to meet these challenges. Our work here is to produce H2 from various bio-alcohols, such as ethanol, ethylene glycol, glycerol and other heavier biomass over a series of catalysts supported on transition metal oxide nanoparticle. The prepared samples were characterized with Brunauer-Emmett-Teller (BET), chemisorption, Temperature-programmed reduction (TPR), Temperature-programmed desorption (TPD) using the AutoChem II 2920 (Micromeritics). The structural and chemical properties are characterized using X-ray diffraction (XRD) and X-ray absorption (XAS) techniques at NSLS of the Brookhaven National Laboratory. The roles of the transition metal oxide nanoparticles in the reforming of bio-alcohols including ethanol, ethylene glycol (EG) and glycerol were tested and compared with in situ X-ray diffraction and X-ray absorption techniques. The XAS data are processed and analyzed using the ATHENA and ARTEMIS analysis software.
AB - Nowadays, over 90% H2 is still produced from steam reforming of natural gas. This process requires high temperature operation. Moreover, the natural gas is mostly provided from fossil fuel resources. In order to minimize the environmental impact, hydrogen produced from biomass resource has been a critical issue to the Department of Energy (DOE) in USA and abroad. The synthesis of functional nanomaterials offers a unique opportunity to make the breakthrough discoveries and truly revolutionary developments to meet these challenges. Our work here is to produce H2 from various bio-alcohols, such as ethanol, ethylene glycol, glycerol and other heavier biomass over a series of catalysts supported on transition metal oxide nanoparticle. The prepared samples were characterized with Brunauer-Emmett-Teller (BET), chemisorption, Temperature-programmed reduction (TPR), Temperature-programmed desorption (TPD) using the AutoChem II 2920 (Micromeritics). The structural and chemical properties are characterized using X-ray diffraction (XRD) and X-ray absorption (XAS) techniques at NSLS of the Brookhaven National Laboratory. The roles of the transition metal oxide nanoparticles in the reforming of bio-alcohols including ethanol, ethylene glycol (EG) and glycerol were tested and compared with in situ X-ray diffraction and X-ray absorption techniques. The XAS data are processed and analyzed using the ATHENA and ARTEMIS analysis software.
UR - http://www.scopus.com/inward/record.url?scp=78649791204&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78649791204&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:78649791204
SN - 9780841200050
T3 - ACS National Meeting Book of Abstracts
BT - American Chemical Society - 238th National Meeting and Exposition, ACS 2009, Abstracts of Scientific Papers
T2 - 238th National Meeting and Exposition of the American Chemical Society, ACS 2009
Y2 - 16 August 2009 through 20 August 2009
ER -