Abstract
Abstract.: In describing the physics of living organisms, a mathematical theory that captures the generic ordering principles of intracellular and multicellular dynamics is essential for distinguishing between universal and system-specific features. Here, we compare two recently proposed nonlinear high-order continuum models for active polar and nematic suspensions, which aim to describe collective migration in dense cell assemblies and the ordering processes in ATP-driven microtubule-kinesin networks, respectively. We discuss the phase diagrams of the two models and relate their predictions to recent experiments. The satisfactory agreement with existing experimental data lends support to the hypothesis that non-equilibrium pattern formation phenomena in a wide range of active systems can be described within the same class of higher-order partial differential equations. Graphical abstract: [Figure not available: see fulltext.]
Original language | English (US) |
---|---|
Article number | 97 |
Journal | European Physical Journal E |
Volume | 39 |
Issue number | 10 |
DOIs | |
State | Published - Oct 1 2016 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Biotechnology
- Biophysics
- General Chemistry
- General Materials Science
- Surfaces and Interfaces
Keywords
- Topical Issue: Nonequilibrium Collective Dynamics in Condensed and Biological Matter