Genetic lineage tracing of targeted cell populations during enthesis healing

Helen L. Moser, Anton P. Doe, Kristen Meier, Simon Garnier, Damien Laudier, Haruhiko Akiyama, Matthias A. Zumstein, Leesa M. Galatz, Alice H. Huang

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


Rotator cuff supraspinatus tendon injuries are clinically challenging due to the high rates of failure after surgical repair. One key limitation to functional healing is the failure to regenerate the enthesis transition between tendon and bone, which heals by disorganized scar formation. Using two models of supraspinatus tendon injury in mouse (partial tear and full detachment/repair), the purpose of the study was to determine functional gait outcomes and identify the origin of the cells that mediate healing. Consistent with previous reports, enthesis injuries did not regenerate; partial tear resulted in a localized scar defect adjacent to intact enthesis, while full detachment with repair resulted in full disruption of enthesis alignment and massive scar formation between tendon and enthesis fibrocartilage. Although gait after partial tear injury was largely normal, gait was permanently impaired after full detachment/repair. Genetic lineage tracing of intrinsic tendon and cartilage/fibrocartilage cells (Scx CreERT2 and Sox9 CreERT2 , respectively), myofibroblasts (αSMA CreERT2 ), and Wnt-responsive stem cells (Axin2 CreERT2 ) failed to identify scar-forming cells in partial tear injury. Unmineralized enthesis fibrocartilage was strongly labeled by Sox9 CreERT2 while Axin2 CrERT2 labeled a subset of tendon cells away from the skeletal insertion site. In contrast to the partial tear model, Axin2 CreERT2 labeling showed considerable contribution of Axin2 lin cells to the scar after full detachment/repair. Clinical Significance: Clinically relevant models of rotator cuff tendon injuries in mouse enable the use of genetic tools; lineage tracing suggests that distinct mechanisms of healing are activated with full detachment/repair injuries versus partial tear.

Original languageEnglish (US)
Pages (from-to)3275-3284
Number of pages10
JournalJournal of Orthopaedic Research
Issue number12
StatePublished - Dec 2018

All Science Journal Classification (ASJC) codes

  • Orthopedics and Sports Medicine


  • enthesis
  • healing
  • injury
  • rotator cuff
  • tendon


Dive into the research topics of 'Genetic lineage tracing of targeted cell populations during enthesis healing'. Together they form a unique fingerprint.

Cite this