Global Energetics of Solar Flares and Coronal Mass Ejections

Markus J. Aschwanden, Amir Caspi, Christina M.S. Cohen, Gordon Holman, Ju Jing, Matthieu Kretzschmar, Eduard P. Kontar, James M. McTiernan, Richard A. Mewaldt, Aidan O'Flannagain, Ian G. Richardson, Daniel Ryan, Harry P. Warren, Yan Xu

Research output: Contribution to journalConference articlepeer-review

5 Scopus citations


We investigate the global energetics and energy closure of various physical processes that are energetically important in solar flares and coronal mass ejections (CMEs), which includes: magnetic energies, thermal energies, nonthermal energies (particle acceleration), direct and indirect plasma heating processes, kinetic CME energies, gravitational CME energies, aerodynamic drag of CMEs, solar energetic particle events, EUV and soft X-ray radiation, white-light, and bolometric energies. Statistics on these forms of energies is obtained from 400 GOES M- and X-class events during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission. A primary test addressed in this study is the closure of the various energies, such as the equivalence of the dissipated magnetic energies and the primary dissipated are energies (accelerated particles, direct heating, CME acceleration), which faciliate the energy of secondary processes (plasma heating, shock acceleration) and interactions with the solar wind (aerodynamic drag). Our study demonstrates energy closure in the statistical average, while individual events may have considerable uncertainties, requiring improved nonlinear force-free field models, and particle acceleration models with observationally constrained low-energy cutoffs.

Original languageEnglish (US)
Article number012002
JournalJournal of Physics: Conference Series
Issue number1
StatePublished - Nov 14 2019
Event18th Annual International Astrophysics Conference, AIAC 2019 - Pasadena, United States
Duration: Feb 18 2019Feb 22 2019

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy


Dive into the research topics of 'Global Energetics of Solar Flares and Coronal Mass Ejections'. Together they form a unique fingerprint.

Cite this