Graph Neural Networks with Adaptive Residual

Xiaorui Liu, Jiayuan Ding, Wei Jin, Han Xu, Yao Ma, Zitao Liu, Jiliang Tang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations


Graph neural networks (GNNs) have shown the power in graph representation learning for numerous tasks. In this work, we discover an interesting phenomenon that although residual connections in the message passing of GNNs help improve the performance, they immensely amplify GNNs’ vulnerability against abnormal node features. This is undesirable because in real-world applications, node features in graphs could often be abnormal such as being naturally noisy or adversarially manipulated. We analyze possible reasons to understand this phenomenon and aim to design GNNs with stronger resilience to abnormal features. Our understandings motivate us to propose and derive a simple, efficient, interpretable, and adaptive message passing scheme, leading to a novel GNN with Adaptive residual, AirGNN1. Extensive experiments under various abnormal feature scenarios demonstrate the effectiveness of the proposed algorithm.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Number of pages14
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: Dec 6 2021Dec 14 2021

Publication series

NameAdvances in Neural Information Processing Systems
ISSN (Print)1049-5258


Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing


Dive into the research topics of 'Graph Neural Networks with Adaptive Residual'. Together they form a unique fingerprint.

Cite this