Graph Representation Learning: Foundations, Methods, Applications and Systems

Wei Jin, Yao Ma, Yiqi Wang, Xiaorui Liu, Jiliang Tang, Yukuo Cen, Jiezhong Qiu, Jie Tang, Chuan Shi, Yanfang Ye, Jiawei Zhang, Philip S. Yu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Graphs such as social networks and molecular graphs are ubiquitous data structures in the real world. Due to their prevalence, it is of great research importance to extract meaningful patterns from graph structured data so that downstream tasks can be facilitated. Instead of designing hand-engineered features, graph representation learning has emerged to learn representations that can encode the abundant information about the graph. It has achieved tremendous success in various tasks such as node classification, link prediction, and graph classification and has attracted increasing attention in recent years. In this tutorial, we systematically review the foundations, techniques, applications and advances in graph representation learning. We first introduce the foundations on graph theory and graph Fourier analysis. We then cover the key achievements of graph representation learning in recent years. Concretely, we discuss the six topics: 1) network embedding theories and systems; 2) foundations of graph neural networks (GNNs); 3) CogDL toolkit for GNNs; 4) scalable GNNs; 5) self-supervised learning in GNNs and 6) heterogeneous graphs and heterogeneous GNNs. Finally, we will introduce the applications of graph representation learning with a focus on recommender systems.

Original languageEnglish (US)
Title of host publicationKDD 2021 - Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages4044-4045
Number of pages2
ISBN (Electronic)9781450383325
DOIs
StatePublished - Aug 14 2021
Externally publishedYes
Event27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021 - Virtual, Online, Singapore
Duration: Aug 14 2021Aug 18 2021

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021
Country/TerritorySingapore
CityVirtual, Online
Period8/14/218/18/21

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems

Keywords

  • graph neural networks
  • graph representation learning
  • heterogeneous graphs

Fingerprint

Dive into the research topics of 'Graph Representation Learning: Foundations, Methods, Applications and Systems'. Together they form a unique fingerprint.

Cite this