TY - JOUR
T1 - Gravity capillary waves in fluid layers under normal electric fields
AU - Papageorgiou, Demetrios T.
AU - Petropoulos, Peter G.
AU - Vanden-Broeck, Jean Marc
PY - 2005/11/1
Y1 - 2005/11/1
N2 - We study the formation and dynamics of interfacial waves on a perfect dielectric ideal fluid layer of finite depth, wetting a solid wall, when the region above the fluid is hydrodynamically passive but has constant permittivity, for example, air. The wall is held at a constant electric potential and a second electrode having a different potential is placed parallel to the wall and infinitely far from it. In the unperturbed state the interface is flat and the normal horizontally uniform electric field is piecewise constant in the liquid and air. We derive a system of long wave nonlinear evolution equations valid for interfacial amplitudes as large as the unperturbed layer depth and which retain gravity, surface tension and electric field effects. It is shown that for given physical parameters there exists a critical value of the voltage potential difference between electrodes, below which the system is dispersive and above which a band of unstable waves is possible centered around a finite wavenumber. In the former case nonlinear traveling waves are calculated and their stability is studied, while in the latter case the instability leads to thinning of the layer with the interface touching down in finite time. A similarity solution of the second kind is found to be dominant near the singularity, and the scaling exponents are determined using analysis and computations.
AB - We study the formation and dynamics of interfacial waves on a perfect dielectric ideal fluid layer of finite depth, wetting a solid wall, when the region above the fluid is hydrodynamically passive but has constant permittivity, for example, air. The wall is held at a constant electric potential and a second electrode having a different potential is placed parallel to the wall and infinitely far from it. In the unperturbed state the interface is flat and the normal horizontally uniform electric field is piecewise constant in the liquid and air. We derive a system of long wave nonlinear evolution equations valid for interfacial amplitudes as large as the unperturbed layer depth and which retain gravity, surface tension and electric field effects. It is shown that for given physical parameters there exists a critical value of the voltage potential difference between electrodes, below which the system is dispersive and above which a band of unstable waves is possible centered around a finite wavenumber. In the former case nonlinear traveling waves are calculated and their stability is studied, while in the latter case the instability leads to thinning of the layer with the interface touching down in finite time. A similarity solution of the second kind is found to be dominant near the singularity, and the scaling exponents are determined using analysis and computations.
UR - http://www.scopus.com/inward/record.url?scp=28844509711&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=28844509711&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.72.051601
DO - 10.1103/PhysRevE.72.051601
M3 - Article
AN - SCOPUS:28844509711
SN - 1063-651X
VL - 72
JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
IS - 5
M1 - 051601
ER -