Growth, structure, and electronic properties of epitaxial bismuth telluride topological insulator films on BaF2 (111) substrates

O. Caha, A. Dubroka, J. Humlíček, V. Holý, H. Steiner, M. Ul-Hassan, J. Sánchez-Barriga, O. Rader, T. N. Stanislavchuk, A. A. Sirenko, G. Bauer, G. Springholz

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

Epitaxial growth of topological insulator bismuth telluride by molecular beam epitaxy onto BaF2 (111) substrates is studied using Bi 2Te3 and Te as source materials. By changing the beam flux composition, different stoichiometric phases are obtained, resulting in high quality Bi2Te3 and Bi1Te1 epilayers as shown by Raman spectroscopy and high-resolution X-ray diffraction. From X-ray reciprocal space mapping, the residual strain, as well as size of coherently scattering domains are deduced. The Raman modes for the two different phases are identified and the dielectric functions derived from spectroscopic ellipsometry investigations. Angular resolved photoemission reveals topologically protected surface states of the Bi2Te3 epilayers. Thus, BaF 2 is a perfectly suited substrate material for the bismuth telluride compounds.

Original languageEnglish (US)
Pages (from-to)3365-3373
Number of pages9
JournalCrystal Growth and Design
Volume13
Issue number8
DOIs
StatePublished - Aug 7 2013

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Growth, structure, and electronic properties of epitaxial bismuth telluride topological insulator films on BaF2 (111) substrates'. Together they form a unique fingerprint.

Cite this