Abstract
Normal gait needs both proprioceptive and visual feedback to the nervous system to effectively control the rhythmicity of motor movement. Current preprogrammed exoskeletons provide only visual feedback with no user control over the foot trajectory. We propose an intuitive controller where hand trajectories are mapped to control contralateral foot movement. Our study shows that proprioceptive feedback provided to the users hand in addition to visual feedback result in better control during virtual ambulation than visual feedback alone. Hand trajectories resembled normal foot trajectories when both proprioceptive and visual feedback was present. Our study concludes that haptic feedback is essential for both temporal and spatial aspects of motor control in rhythmic movements.
Original language | English (US) |
---|---|
Pages (from-to) | 3594-3597 |
Number of pages | 4 |
Journal | Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference |
Volume | 2014 |
DOIs | |
State | Published - Jan 1 2014 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Medicine