Abstract
Recent numerical evidence suggests that in the Hele-Shaw suction problem with vanishingly small surface tension γ, the free boundary generically approaches the sink in a wedge-like configuration, blow-up occurring when the wedge apex reaches the sink. Sometimes two or more such wedges approach the sink simultaneously. We construct a family of solutions to the zero-surface tension (ZST) problem in which fluid is injected at the (coincident) apices of an arbitrary number N of identical infinite wedges, of arbitrary angle. The time reversed suction problem then models what is observed numerically with non-zero surface tension. We conjecture that (for a given value of N) a particular member of this family of ZST solutions, with special complex plane singularity structure, is selected in the limit γ → 0.
Original language | English (US) |
---|---|
Pages (from-to) | 1-37 |
Number of pages | 37 |
Journal | European Journal of Applied Mathematics |
Volume | 15 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2004 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Applied Mathematics