Hierarchical 3D electrodes for electrochemical energy storage

Hongtao Sun, Jian Zhu, Daniel Baumann, Lele Peng, Yuxi Xu, Imran Shakir, Yu Huang, Xiangfeng Duan

Research output: Contribution to journalReview articlepeer-review

604 Scopus citations

Abstract

The discovery and development of electrode materials promise superior energy or power density. However, good performance is typically achieved only in ultrathin electrodes with low mass loadings (≤1 mg cm−2) and is difficult to realize in commercial electrodes with higher mass loadings (>10 mg cm−2). To realize the full potential of these electrode materials, new electrode architectures are required that can allow more efficient charge transport beyond the limits of traditional electrodes. In this Review, we summarize the design and synthesis of 3D electrodes to address charge transport limitations in thick electrodes. Specifically, we discuss the role of charge transport in electrochemical systems and focus on the design of 3D porous structures with a continuous conductive network for electron transport and a fully interconnected hierarchical porosity for ion transport. We also discuss the application of 3D porous architectures as conductive scaffolds for various electrode materials to enable composite electrodes with an unprecedented combination of energy and power densities and then conclude with a perspective on future opportunities and challenges.

Original languageEnglish (US)
Pages (from-to)45-60
Number of pages16
JournalNature Reviews Materials
Volume4
Issue number1
DOIs
StatePublished - Jan 1 2019

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Energy (miscellaneous)
  • Surfaces, Coatings and Films
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Hierarchical 3D electrodes for electrochemical energy storage'. Together they form a unique fingerprint.

Cite this