TY - JOUR
T1 - High sensitivity of diesel soot morphological and optical properties to combustion temperature in a shock tube
AU - Qiu, Chong
AU - Khalizov, Alexei F.
AU - Hogan, Brian
AU - Petersen, Eric L.
AU - Zhang, Renyi
PY - 2014/6/3
Y1 - 2014/6/3
N2 - Carbonaceous particles produced from combustion of fossil fuels have strong impacts on air quality and climate, yet quantitative relationships between particle characteristics and combustion conditions remain inadequately understood. We have used a shock tube to study the formation and properties of diesel combustion soot, including particle size distributions, effective density, elemental carbon (EC) mass fraction, mass-mobility scaling exponent, hygroscopicity, and light absorption and scattering. These properties are found to be strongly dependent on the combustion temperature and fuel equivalence ratio. Whereas combustion at higher temperatures (∼2000 K) yields fractal particles of a larger size and high EC content (90 wt %), at lower temperatures (∼1400 K) smaller particles of a higher organic content (up to 65 wt %) are produced. Single scattering albedo of soot particles depends largely on their organic content, increasing drastically from 0.3 to 0.8 when the particle EC mass fraction decreases from 0.9 to 0.3. The mass absorption cross-section of diesel soot increases with combustion temperature, being the highest for particles with a higher EC content. Our results reveal that combustion conditions, especially the temperature, may have significant impacts on the direct and indirect climate forcing of atmospheric soot aerosols.
AB - Carbonaceous particles produced from combustion of fossil fuels have strong impacts on air quality and climate, yet quantitative relationships between particle characteristics and combustion conditions remain inadequately understood. We have used a shock tube to study the formation and properties of diesel combustion soot, including particle size distributions, effective density, elemental carbon (EC) mass fraction, mass-mobility scaling exponent, hygroscopicity, and light absorption and scattering. These properties are found to be strongly dependent on the combustion temperature and fuel equivalence ratio. Whereas combustion at higher temperatures (∼2000 K) yields fractal particles of a larger size and high EC content (90 wt %), at lower temperatures (∼1400 K) smaller particles of a higher organic content (up to 65 wt %) are produced. Single scattering albedo of soot particles depends largely on their organic content, increasing drastically from 0.3 to 0.8 when the particle EC mass fraction decreases from 0.9 to 0.3. The mass absorption cross-section of diesel soot increases with combustion temperature, being the highest for particles with a higher EC content. Our results reveal that combustion conditions, especially the temperature, may have significant impacts on the direct and indirect climate forcing of atmospheric soot aerosols.
UR - http://www.scopus.com/inward/record.url?scp=84901940189&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84901940189&partnerID=8YFLogxK
U2 - 10.1021/es405589d
DO - 10.1021/es405589d
M3 - Article
C2 - 24803287
AN - SCOPUS:84901940189
SN - 0013-936X
VL - 48
SP - 6444
EP - 6452
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 11
ER -