TY - JOUR
T1 - Hippocampus-based static functional connectivity mapping within white matter in mild cognitive impairment
AU - Jiang, Yuan
AU - Wang, Pan
AU - Wen, Jiaping
AU - Wang, Jianlin
AU - Li, Hongyi
AU - Biswal, Bharat B.
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2022/9
Y1 - 2022/9
N2 - Mild cognitive impairment (MCI) is clinically characterized by memory loss and cognitive impairment closely associated with the hippocampal atrophy. Accumulating studies have confirmed the presence of neural signal changes within white matter (WM) in resting-state functional magnetic resonance imaging (fMRI). However, it remains unclear how abnormal hippocampus activity affects the WM regions in MCI. The current study employs 43 MCI, 71 very MCI (VMCI) and 87 age-, gender-, and education-matched healthy controls (HCs) from the public OASIS-3 dataset. Using the left and right hippocampus as seed points, we obtained the whole-brain functional connectivity (FC) maps for each subject. We then perform one-way ANOVA analysis to investigate the abnormal FC regions among HCs, VMCI, and MCI. We further performed probabilistic tracking to estimate whether the abnormal FC correspond to structural connectivity disruptions. Compared to HCs, MCI and VMCI groups exhibited reduced FC in the right middle temporal gyrus within gray matter, and right temporal pole, right inferior frontal gyrus within white matter. Specific dysconnectivity is shown in the cerebellum Crus II, left inferior temporal gyrus within gray matter, and right frontal gyrus within white matter. In addition, the fiber bundles connecting the left hippocampus and right temporal pole within white matter show abnormally increased mean diffusivity in MCI. The current study proposes a new functional imaging direction for exploring the mechanism of memory decline and pathophysiological mechanisms in different stages of Alzheimer’s disease.
AB - Mild cognitive impairment (MCI) is clinically characterized by memory loss and cognitive impairment closely associated with the hippocampal atrophy. Accumulating studies have confirmed the presence of neural signal changes within white matter (WM) in resting-state functional magnetic resonance imaging (fMRI). However, it remains unclear how abnormal hippocampus activity affects the WM regions in MCI. The current study employs 43 MCI, 71 very MCI (VMCI) and 87 age-, gender-, and education-matched healthy controls (HCs) from the public OASIS-3 dataset. Using the left and right hippocampus as seed points, we obtained the whole-brain functional connectivity (FC) maps for each subject. We then perform one-way ANOVA analysis to investigate the abnormal FC regions among HCs, VMCI, and MCI. We further performed probabilistic tracking to estimate whether the abnormal FC correspond to structural connectivity disruptions. Compared to HCs, MCI and VMCI groups exhibited reduced FC in the right middle temporal gyrus within gray matter, and right temporal pole, right inferior frontal gyrus within white matter. Specific dysconnectivity is shown in the cerebellum Crus II, left inferior temporal gyrus within gray matter, and right frontal gyrus within white matter. In addition, the fiber bundles connecting the left hippocampus and right temporal pole within white matter show abnormally increased mean diffusivity in MCI. The current study proposes a new functional imaging direction for exploring the mechanism of memory decline and pathophysiological mechanisms in different stages of Alzheimer’s disease.
KW - Alzheimer’s disease
KW - Functional connectivity
KW - Hippocampus
KW - Mild cognitive impairment
KW - White matter
UR - http://www.scopus.com/inward/record.url?scp=85134631587&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85134631587&partnerID=8YFLogxK
U2 - 10.1007/s00429-022-02521-x
DO - 10.1007/s00429-022-02521-x
M3 - Article
C2 - 35864361
AN - SCOPUS:85134631587
SN - 1863-2653
VL - 227
SP - 2285
EP - 2297
JO - Brain Structure and Function
JF - Brain Structure and Function
IS - 7
ER -