Hover kinematics and distributed pressure sensing for force control of biorobotic fins

Jeff C. Kahn, Brooke E. Flammang, James L. Tangorra

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

A comprehensive understanding of the ways in which fish create and control forces is fundamental to engineering underwater vehicles that maneuver with the agility of fish. In this study the sunfish was selected as a biological model from which to understand pectoral fin motions and forces during hover. The kinematic patterns of the biological fin were identified and implemented on a biorobotic model of the fin. The effects of fin patterns and mechanical properties on force were evaluated. Pressure was measured at multiple points on the fin's surface and assessed for use in the closed loop control of fin force. The study revealed that a wide range of motions are used during hover, and that forces are significantly different from those found previously for steady swimming. However as fin speeds increase, the fin's dynamic motions, and the magnitude and direction of the forces become more similar to those of steady swimming. Collective measures of pressure over the fin's surface exhibited trends that correlated well with fin forces in relative magnitudes and directions. Results strongly suggest that distributed measures of pressure are useful for force prediction and control.

Original languageEnglish (US)
Title of host publication2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1460-1466
Number of pages7
ISBN (Print)9781467317375
DOIs
StatePublished - 2012
Externally publishedYes
Event25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012 - Vilamoura, Algarve, Portugal
Duration: Oct 7 2012Oct 12 2012

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other25th IEEE/RSJ International Conference on Robotics and Intelligent Systems, IROS 2012
Country/TerritoryPortugal
CityVilamoura, Algarve
Period10/7/1210/12/12

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Hover kinematics and distributed pressure sensing for force control of biorobotic fins'. Together they form a unique fingerprint.

Cite this