How to control the stoichiometry of cadmium telluride thin film for photovoltaic applications

Xuehai Tan, Shou Peng, Chuanjun Zhang, Akash Saraf, Guogen Liu, Shenjiang Xia, Jingong Pan, Velappan Krishnakumar, Bastian Siepchen, Alan E. Delahoy, Ken K. Chin

Research output: Contribution to journalArticlepeer-review

Abstract

In this study, Bube's growth model for a cadmium telluride (CdTe) polycrystalline thin film was re-examined with a view of avoiding his assumptions that neglect the vapor pressures of Cd and Te2 near the film. We proposed a new thermodynamic growth model based on the fact that there is an experimentally verified characteristic ratio (α) of equilibrium partial pressures PCd/2PTe2 that depends on the temperature T and CdTe stoichiometry. By writing PCd (0)=2α(0)PTe2 (0) and PCd (h)=2α(h)PTe2 (h), where α(0) is determined by source stoichiometry, we can solve the equations for α(h) and thereby determine the stoichiometry of the CdTe thin film grown under physical vapor deposition (PVD) conditions. Simulation was performed to predict the stoichiometry of the CdTe thin film as a function of source stoichiometry for various source-film temperature combinations. The results show that for a typical CdTe PVD process with Tsource > Tthin film: (1) stable deposition, without a non-stoichiometric composition shift, can be achieved at congruent-growth stoichiometry; (2) any stoichiometric deviation from the congruent sublimation point becomes more substantial (in the same direction) in the thin film than in the source; and (3) larger ΔT between the source and the thin film results in a more composition shift.

Original languageEnglish (US)
Article number063505
JournalJournal of Renewable and Sustainable Energy
Volume9
Issue number6
DOIs
StatePublished - Nov 1 2017

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'How to control the stoichiometry of cadmium telluride thin film for photovoltaic applications'. Together they form a unique fingerprint.

Cite this