TY - GEN
T1 - Human-directed robot motion/force control for contact tasks in unstructured environments
AU - Lu, Lu
AU - Wen, John T.
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/10/7
Y1 - 2015/10/7
N2 - In assistive robotics for disabled individuals or telerobotics for remote operations, the human user may need to teleoperate a robot in an unstructured environment. Many tasks involve physical contact between the robot end-effector and environment, e.g., cleaning window, opening door, etc. To successfully execute these tasks, force control is required in the constrained direction together with position control in the complementary direction. In this paper, we consider the problem of human-directed position/force control of robot end-effector interacting with the environment with unknown or uncertain geometry and stiffness. The human user supplies the motion command for the end-effector, while the contact force is autonomously regulated. We assume that the contact force between the robot end-effector and the environment may be measured, but the exact geometric relationship is not available. The measured contact force is used to determine if the robot is in the free space mode or the contact mode. In the free space mode, the user command translates to the end-effector position or velocity. In the contact mode, the user input in the unconstrained direction specifies the motion, while the input in the constrained direction, as determined by the measured contact force, changes the force setpoint. To avoid chattering around the constraint boundary, the transition between the free space mode and contact mode is governed by a hysteresis function with the measured contact force as the input. The proposed approach is implemented on the dual-arm Baxter robot mounted on a mobile base. In the experiment demonstration, a human user commands the mobile manipulator to erase the letters on a white board. For thorough board erasure, sufficient normal force needs to be applied. We show that the user can easily adjust the force setpoint while commanding the end effector motion to successfully execute the task.
AB - In assistive robotics for disabled individuals or telerobotics for remote operations, the human user may need to teleoperate a robot in an unstructured environment. Many tasks involve physical contact between the robot end-effector and environment, e.g., cleaning window, opening door, etc. To successfully execute these tasks, force control is required in the constrained direction together with position control in the complementary direction. In this paper, we consider the problem of human-directed position/force control of robot end-effector interacting with the environment with unknown or uncertain geometry and stiffness. The human user supplies the motion command for the end-effector, while the contact force is autonomously regulated. We assume that the contact force between the robot end-effector and the environment may be measured, but the exact geometric relationship is not available. The measured contact force is used to determine if the robot is in the free space mode or the contact mode. In the free space mode, the user command translates to the end-effector position or velocity. In the contact mode, the user input in the unconstrained direction specifies the motion, while the input in the constrained direction, as determined by the measured contact force, changes the force setpoint. To avoid chattering around the constraint boundary, the transition between the free space mode and contact mode is governed by a hysteresis function with the measured contact force as the input. The proposed approach is implemented on the dual-arm Baxter robot mounted on a mobile base. In the experiment demonstration, a human user commands the mobile manipulator to erase the letters on a white board. For thorough board erasure, sufficient normal force needs to be applied. We show that the user can easily adjust the force setpoint while commanding the end effector motion to successfully execute the task.
UR - http://www.scopus.com/inward/record.url?scp=84952781342&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84952781342&partnerID=8YFLogxK
U2 - 10.1109/CoASE.2015.7294255
DO - 10.1109/CoASE.2015.7294255
M3 - Conference contribution
AN - SCOPUS:84952781342
T3 - IEEE International Conference on Automation Science and Engineering
SP - 1165
EP - 1170
BT - 2015 IEEE Conference on Automation Science and Engineering
PB - IEEE Computer Society
T2 - 11th IEEE International Conference on Automation Science and Engineering, CASE 2015
Y2 - 24 August 2015 through 28 August 2015
ER -