Abstract
OBJECTIVE: To design and analyze a new family of hybrid methods for the diagnosis of breast tumors using fine needle aspirates. STUDY DESIGN: We present a radically new approach to the design of diagnosis systems. In the new approach, a nonlinear classifier with high sensitivity but low specificity is hybridized with a linear classifier having low sensitivity but high specificity. Data from the Wisconsin Breast Cancer Database are used to evaluate, computationally, the performance of the hybrid classifiers. RESULTS: The diagnosis scheme obtained by hybridizing the nonlinear classifier ellipsoidal multisurface method (EMSM) with the linear classifier proximal support vector machine (PSVM) was found to have a mean sensitivity of 97.36% and a mean specificity of 95.14% and was found to yield a 2.44% improvement in the reliability of positive diagnosis over that of EMSM at the expense of 0.4% degradation in the reliability of negative diagnosis, again compared to EMSM. At the 95% confidence level we can trust the hybrid method to be 96.19-98.53% correct in its malignant diagnosis of new tumors and 93.57-96.71% correct in its benign diagnosis. CONCLUSION: Hybrid diagnosis schemes represent a significant paradigm shift and provide a promising new technique to improve the specificity of nonlinear classifiers without seriously affecting the high sensitivity of nonlinear classifiers.
Original language | English (US) |
---|---|
Pages (from-to) | 183-190 |
Number of pages | 8 |
Journal | Analytical and Quantitative Cytology and Histology |
Volume | 25 |
Issue number | 4 |
State | Published - Aug 2003 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Anatomy
- Histology
Keywords
- Aspiration biopsy
- Breast cancer
- Computer assisted
- Diagnosis