Hyperspectral Imaging Microscopy of Acetaminophen Adsorbed on Multiwalled Carbon Nanotubes

Yifei Wang, Wanyi Fu, Yuxiang Shen, Appala Raju Badireddy, Wen Zhang, Haiou Huang

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

In this study, enhanced dark-field hyperspectral imaging (ED-HSI) was employed to directly observe acetaminophen (AAP), a model pharmaceutical and personal care product (PPCP), adsorbed on multiwalled carbon nanotubes with large diameters (L-MWCNT) and small diameters (S-MWCNT) under equilibrium conditions. The ED-HSI results revealed that (1) AAP molecules primarily adsorbed onto the external surfaces, rather than the internal surfaces of L- and S-MWCNT aggregates, (2) or on sidewall of the dispersed tubes, but not at their end caps. Besides, ED-HSI images showed that the surface coverage ratio of AAP/S-MWCNT is smaller than that of AAP/L-MWCNT (1.1 vs 3.4), indicating that there are more available adsorption sites on S-MWCNT than L-MWCNT when the adsorption reached equilibrium. This finding was consistent with the adsorption capacities of S-MWCNT and L-MWCNT (252.7 vs 54.6 mg g-1). Direct visualization of sorption sites for PPCP molecules provides new insights into the heterogeneous structures and surface properties of MWCNT and helps elucidate the adsorption mechanisms that are fundamental to the design of functional adsorbents for PPCP contaminants.

Original languageEnglish (US)
Pages (from-to)13210-13218
Number of pages9
JournalLangmuir
Volume34
Issue number44
DOIs
StatePublished - Nov 6 2018

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint

Dive into the research topics of 'Hyperspectral Imaging Microscopy of Acetaminophen Adsorbed on Multiwalled Carbon Nanotubes'. Together they form a unique fingerprint.

Cite this