Illuminating Mario Scenes in the Latent Space of a Generative Adversarial Network

Matthew C. Fontaine, Ruilin Liu, Ahmed Khalifa, Jignesh Modi, Julian Togelius, Amy K. Hoover, Stefanos Nikolaidis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

42 Scopus citations

Abstract

Generative adversarial networks (GANs) are quickly becoming a ubiquitous approach to procedurally generating video game levels. While GAN generated levels are stylistically similar to human-authored examples, human designers often want to explore the generative design space of GANs to extract interesting levels. However, human designers find latent vectors opaque and would rather explore along dimensions the designer specifies, such as number of enemies or obstacles. We propose using state-of-the-art quality diversity algorithms designed to optimize continuous spaces, i.e. MAP-Elites with a directional variation operator and Covariance Matrix Adaptation MAP-Elites, to efficiently explore the latent space of a GAN to extract levels that vary across a set of specified gameplay measures. In the benchmark domain of Super Mario Bros, we demonstrate how designers may specify gameplay measures to our system and extract high-quality (playable) levels with a diverse range of level mechanics, while still maintaining stylistic similarity to human authored examples. An online user study shows how the different mechanics of the automatically generated levels affect subjective ratings of their perceived difficulty and appearance.

Original languageEnglish (US)
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages5922-5930
Number of pages9
ISBN (Electronic)9781713835974
DOIs
StatePublished - 2021
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: Feb 2 2021Feb 9 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume7

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/2/212/9/21

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Illuminating Mario Scenes in the Latent Space of a Generative Adversarial Network'. Together they form a unique fingerprint.

Cite this