TY - GEN
T1 - Improved large-scale graph learning through ridge spectral sparsification
AU - Calandriello, Daniele
AU - Koutis, Ioannis
AU - Lazaric, Alessandro
AU - Valko, Michal
N1 - Publisher Copyright:
© 2018 by the Authors. All rights reserved.
PY - 2018
Y1 - 2018
N2 - The representation and learning benefits of methods based on graph Laplacians, such as Laplacian smoothing or harmonic function solution for semi-supervised learning (SSL), are empirically and theoretically well supported. Nonetheless, the exact versions of these methods scale poorly with the number of nodes n of the graph. In this paper, we combine a spectral sparsification routine with Laplacian learning. Given a graph G as input, our algorithm computes a sparsi- fier in a distributed way in O(n log3 (n)) time, O(m log3 (n)) work and O(n log(n)) memory, using only log(n) rounds of communication. Furthermore, motivated by the regularization often employed in learning algorithms, we show that constructing sparsifiers that preserve the spectrum of the Laplacian only up to the regularization level may drastically reduce the size of the final graph. By constructing a spectrally-similar graph, we are able to bound the error induced by the sparsification for a variety of downstream tasks (e.g., SSL). We empirically validate the theoretical guarantees on Amazon co-purchase graph and compare to the state-of-the-art heuristics.
AB - The representation and learning benefits of methods based on graph Laplacians, such as Laplacian smoothing or harmonic function solution for semi-supervised learning (SSL), are empirically and theoretically well supported. Nonetheless, the exact versions of these methods scale poorly with the number of nodes n of the graph. In this paper, we combine a spectral sparsification routine with Laplacian learning. Given a graph G as input, our algorithm computes a sparsi- fier in a distributed way in O(n log3 (n)) time, O(m log3 (n)) work and O(n log(n)) memory, using only log(n) rounds of communication. Furthermore, motivated by the regularization often employed in learning algorithms, we show that constructing sparsifiers that preserve the spectrum of the Laplacian only up to the regularization level may drastically reduce the size of the final graph. By constructing a spectrally-similar graph, we are able to bound the error induced by the sparsification for a variety of downstream tasks (e.g., SSL). We empirically validate the theoretical guarantees on Amazon co-purchase graph and compare to the state-of-the-art heuristics.
UR - http://www.scopus.com/inward/record.url?scp=85057285175&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057285175&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85057285175
T3 - 35th International Conference on Machine Learning, ICML 2018
SP - 1081
EP - 1090
BT - 35th International Conference on Machine Learning, ICML 2018
A2 - Dy, Jennifer
A2 - Krause, Andreas
PB - International Machine Learning Society (IMLS)
T2 - 35th International Conference on Machine Learning, ICML 2018
Y2 - 10 July 2018 through 15 July 2018
ER -