TY - JOUR
T1 - Inducing spontaneous electric polarizations in double perovskite iodide superlattices for ferroelectric photovoltaic materials
AU - Young, Joshua
AU - Rondinelli, James M.
N1 - Publisher Copyright:
© 2018 American Physical Society.
PY - 2018/6/22
Y1 - 2018/6/22
N2 - In this work, we use density functional theory calculations to demonstrate how spontaneous electric polarizations can be induced via a hybrid improper ferroelectric mechanism in iodide perovskites, a family well known to display solar-optimal band gaps, to create materials for photoferroic applications. We first assemble three chemically distinct (AA′)(BB′)I6 double perovskites using centrosymmetric ABI3 perovskite iodides (where A=Cs, Rb, K and B=Sn, Ge) as building units. In each superlattice, we investigate the effects of three types of A- and B-site cation ordering schemes and three different BI6 octahedral rotation patterns. Out of these 27 combinations, we find that 15 produce polar space groups and display spontaneous electric polarizations ranging from 0.26 to 23.33μC/cm2. Furthermore, we find that a layered A-site/rock salt B-site ordering, in the presence of an a0a0c+ rotation pattern, produces a chiral vortex-like A-site displacement pattern. We then investigate the effect of epitaxial strain on one of these compounds, (CsRb)(SnGe)I6, in layered and rock salt ordered configurations. In both phases, we find strong competition between the cation ordering schemes as well as an enhancement of the spontaneous polarization magnitude under tensile strain. Finally, using a hybrid density functional with fractional Fock exchange, we find the iodide superlattices display semiconducting band gaps ranging from 0.2 to 1.3 eV. These results demonstrate that cation ordering and epitaxial strain are powerful ways to induce and control functionalities in technologically useful families of materials.
AB - In this work, we use density functional theory calculations to demonstrate how spontaneous electric polarizations can be induced via a hybrid improper ferroelectric mechanism in iodide perovskites, a family well known to display solar-optimal band gaps, to create materials for photoferroic applications. We first assemble three chemically distinct (AA′)(BB′)I6 double perovskites using centrosymmetric ABI3 perovskite iodides (where A=Cs, Rb, K and B=Sn, Ge) as building units. In each superlattice, we investigate the effects of three types of A- and B-site cation ordering schemes and three different BI6 octahedral rotation patterns. Out of these 27 combinations, we find that 15 produce polar space groups and display spontaneous electric polarizations ranging from 0.26 to 23.33μC/cm2. Furthermore, we find that a layered A-site/rock salt B-site ordering, in the presence of an a0a0c+ rotation pattern, produces a chiral vortex-like A-site displacement pattern. We then investigate the effect of epitaxial strain on one of these compounds, (CsRb)(SnGe)I6, in layered and rock salt ordered configurations. In both phases, we find strong competition between the cation ordering schemes as well as an enhancement of the spontaneous polarization magnitude under tensile strain. Finally, using a hybrid density functional with fractional Fock exchange, we find the iodide superlattices display semiconducting band gaps ranging from 0.2 to 1.3 eV. These results demonstrate that cation ordering and epitaxial strain are powerful ways to induce and control functionalities in technologically useful families of materials.
UR - http://www.scopus.com/inward/record.url?scp=85059628873&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059628873&partnerID=8YFLogxK
U2 - 10.1103/PhysRevMaterials.2.065406
DO - 10.1103/PhysRevMaterials.2.065406
M3 - Article
AN - SCOPUS:85059628873
SN - 2475-9953
VL - 2
JO - Physical Review Materials
JF - Physical Review Materials
IS - 6
M1 - 065406
ER -