Abstract
Purpose: Telomerase promoter mutations are highly prevalent in human tumors including melanoma. A subset of patients with metastatic melanoma often fail multiple therapies, and there is an unmet and urgent need to prolong disease control for those patients. Experimental Design: Numerous preclinical therapy-resistant models of human and mouse melanoma were used to test the efficacy of a telomerase-directed nucleoside, 6-thio-2'-deoxyguanosine (6-thio-dG). Integrated transcrip-tomics and proteomics approaches were used to identify genes and proteins that were significantly downregulated by 6-thio-dG. Results: We demonstrated the superior efficacy of 6-thio-dG both in vitro and in vivo that results in telomere dysfunction, leading to apoptosis and cell death in various preclinical models of therapy-resistant melanoma cells. 6-thio-dG concomitantly induces telomere dysfunction and inhibits the expression level of AXL. Conclusions: In summary, this study shows that indirectly targeting aberrant telomerase in melanoma cells with 6-thio-dG is a viable therapeutic approach in prolonging disease control and overcoming therapy resistance.
Original language | English (US) |
---|---|
Pages (from-to) | 4771-4784 |
Number of pages | 14 |
Journal | Clinical Cancer Research |
Volume | 24 |
Issue number | 19 |
DOIs | |
State | Published - Oct 1 2018 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Medicine