Information Leakage in Index Coding With Sensitive and Non-Sensitive Messages

Yucheng Liu, Lawrence Ong, Phee Lep Yeoh, Parastoo Sadeghi, Joerg Kliewer, Sarah Johnson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Information leakage to a guessing adversary in index coding is studied, where some messages in the system are sensitive and others are not. The non-sensitive messages can be used by the server like secret keys to mitigate leakage of the sensitive messages to the adversary. We construct a deterministic linear coding scheme, developed from the rank minimization method based on fitting matrices (Bar-Yossef et al. 2011). The linear scheme leads to a novel upper bound on the optimal information leakage rate, which is proved to be tight over all deterministic scalar linear codes. We also derive a converse result from a graph-theoretic perspective, which holds in general over all deterministic and stochastic coding schemes.

Original languageEnglish (US)
Title of host publication2022 IEEE International Symposium on Information Theory, ISIT 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3256-3261
Number of pages6
ISBN (Electronic)9781665421591
DOIs
StatePublished - 2022
Event2022 IEEE International Symposium on Information Theory, ISIT 2022 - Espoo, Finland
Duration: Jun 26 2022Jul 1 2022

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2022-June
ISSN (Print)2157-8095

Conference

Conference2022 IEEE International Symposium on Information Theory, ISIT 2022
Country/TerritoryFinland
CityEspoo
Period6/26/227/1/22

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Information Leakage in Index Coding With Sensitive and Non-Sensitive Messages'. Together they form a unique fingerprint.

Cite this