Information Leakage in Zero-Error Source Coding: A Graph-Theoretic Perspective

Yucheng Liu, Lawrence Ong, Sarah Johnson, Joerg Kliewer, Parastoo Sadeghi, Phee Lep Yeoh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

We study the information leakage to a guessing adversary in zero-error source coding. The source coding problem is defined by a confusion graph capturing the distinguishability between source symbols. The information leakage is measured by the ratio of the adversary's successful guessing probability after and before eavesdropping the codeword, maximized over all possible source distributions. Such measurement under the basic adversarial model where the adversary makes a single guess and the guess is regarded successful if and only if the estimator sequence equals to the true source sequence is known as the maximum min-entropy leakage or the maximal leakage in the literature. We develop a single-letter characterization of the optimal normalized leakage under the basic adversarial model, together with an optimum-achieving memoryless stochastic mapping scheme. An interesting observation is that the optimal normalized leakage is equal to the optimal compression rate with fixed-length source codes, both of which can be simultaneously achieved by some deterministic coding schemes. We then extend the leakage measurement to generalized adversarial models where the adversary makes multiple guesses and allows a certain level of distortion, for which we derive single-letter lower and upper bounds.

Original languageEnglish (US)
Title of host publication2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2590-2595
Number of pages6
ISBN (Electronic)9781538682098
DOIs
StatePublished - Jul 12 2021
Externally publishedYes
Event2021 IEEE International Symposium on Information Theory, ISIT 2021 - Virtual, Melbourne, Australia
Duration: Jul 12 2021Jul 20 2021

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2021-July
ISSN (Print)2157-8095

Conference

Conference2021 IEEE International Symposium on Information Theory, ISIT 2021
Country/TerritoryAustralia
CityVirtual, Melbourne
Period7/12/217/20/21

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Information Leakage in Zero-Error Source Coding: A Graph-Theoretic Perspective'. Together they form a unique fingerprint.

Cite this