Abstract
The overall predictive uncertainty of a trained predictor can be decomposed into separate contributions due to epistemic and aleatoric uncertainty. Under a Bayesian formulation, assuming a well-specified model, the two contributions can be exactly expressed (for the log-loss) or bounded (for more general losses) in terms of information-theoretic quantities (Xu and Raginsky, 2020). This paper addresses the study of epistemic uncertainty within an information-theoretic framework in the broader setting of Bayesian meta-learning. A general hierarchical Bayesian model is assumed in which hyperparameters determine the per-task priors of the model parameters. Exact characterizations (for the log-loss) and bounds (for more general losses) are derived for the epistemic uncertainty - quantified by the minimum excess meta-risk (MEMR) - of optimal meta-learning rules. This characterization is leveraged to bring insights into the dependence of the epistemic uncertainty on the number of tasks and on the amount of per-task training data. Experiments are presented that use the proposed information-theoretic bounds, evaluated via neural mutual information estimators, to compare the performance of conventional learning and meta-learning as the number of meta-learning tasks increases.
Original language | English (US) |
---|---|
Pages (from-to) | 9758-9775 |
Number of pages | 18 |
Journal | Proceedings of Machine Learning Research |
Volume | 151 |
State | Published - 2022 |
Event | 25th International Conference on Artificial Intelligence and Statistics, AISTATS 2022 - Virtual, Online, Spain Duration: Mar 28 2022 → Mar 30 2022 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability