Information-Theory-based Nondominated Sorting Ant Colony Optimization for Multiobjective Feature Selection in Classification

Ziqian Wang, Shangce Gao, Meng Chu Zhou, Syuhei Sato, Jiujun Cheng, Jiahai Wang

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


Feature selection (FS) has received significant attention since the use of a well-selected subset of features may achieve better classification performance than that of full features in many real-world applications. It can be considered as a multiobjective optimization consisting of two objectives: 1) minimizing the number of selected features and 2) maximizing classification performance. Ant colony optimization (ACO) has shown its effectiveness in FS due to its problem-guided search operator and flexible graph representation. However, there lacks an effective ACO-based approach for multiobjective FS to handle the problematic characteristics originated from the feature interactions and highly discontinuous Pareto fronts. This article presents an Information-theory-based Nondominated Sorting ACO (called INSA) to solve the aforementioned difficulties. First, the probabilistic function in ACO is modified based on the information theory to identify the importance of features; second, a new ACO strategy is designed to construct solutions; and third, a novel pheromone updating strategy is devised to ensure the high diversity of tradeoff solutions. INSA's performance is compared with four machine-learning-based methods, four representative single-objective evolutionary algorithms, and six state-of-the-art multiobjective ones on 13 benchmark classification datasets, which consist of both low and high-dimensional samples. The empirical results verify that INSA is able to obtain solutions with better classification performance using features whose count is similar to or less than those obtained by its peers.

Original languageEnglish (US)
Pages (from-to)5276-5289
Number of pages14
JournalIEEE Transactions on Cybernetics
Issue number8
StatePublished - Aug 1 2023

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems
  • Human-Computer Interaction
  • Electrical and Electronic Engineering
  • Control and Systems Engineering
  • Computer Science Applications


  • Binary ant colony optimization (ACO)
  • classification
  • information theory
  • multiobjective feature selection (FS)
  • wrapper


Dive into the research topics of 'Information-Theory-based Nondominated Sorting Ant Colony Optimization for Multiobjective Feature Selection in Classification'. Together they form a unique fingerprint.

Cite this