Inhibition-Induced theta resonance in cortical circuits

Eran Stark, Ronny Eichler, Lisa Roux, Shigeyoshi Fujisawa, Horacio G. Rotstein, György Buzsáki

Research output: Contribution to journalArticlepeer-review

230 Scopus citations


Both circuit and single-cell properties contribute to network rhythms. Invitro, pyramidal cells exhibit theta-band membrane potential (subthreshold) resonance, but whether and how subthreshold resonance translates into spiking resonance in freely behaving animals is unknown. Here, we used optogenetic activation to trigger spiking in pyramidal cells or parvalbumin immunoreactive interneurons (PV) in the hippocampus and neocortex of freely behaving rodents. Individual directly activated pyramidal cells exhibited narrow-band spiking centered on a wide range of frequencies. In contrast, PV photoactivation indirectly induced theta-band-limited, excess postinhibitory spiking in pyramidal cells (resonance). PV-inhibited pyramidal cells and interneurons spiked at PV-inhibition troughs, similar to CA1 cells during spontaneous theta oscillations. Pharmacological blockade of hyperpolarization-activated (Ih) currents abolished theta resonance. Inhibition-induced theta-band spiking was replicated in a pyramidal cell-interneuronmodel that included Ih. Thus, PV interneurons mediate pyramidal cell spiking resonance in intact cortical networks, favoring transmission at theta frequency.

Original languageEnglish (US)
Pages (from-to)1263-1276
Number of pages14
Issue number5
StatePublished - Dec 4 2013

All Science Journal Classification (ASJC) codes

  • General Neuroscience


Dive into the research topics of 'Inhibition-Induced theta resonance in cortical circuits'. Together they form a unique fingerprint.

Cite this