Input-queued switching with QoS guarantees

Shizhao Li, Nirwan Ansari

Research output: Chapter in Book/Report/Conference proceedingConference contribution

32 Scopus citations

Abstract

Input-queued switching architectures are becoming an attractive alternative for designing very high speed switches owing to its scalability. Tremendous efforts have been made to overcome the throughput problem caused by contentions occurred at the input and output sides of the switches. However, no QoS guarantees can be provided by the current input-queued switch design. In this paper, a frame based scheduling algorithm, referred to as store-sort-and-forward (SSF), is proposed to provide QoS guarantees for input-queued switches without requiring speedup. SSF uses a framing strategy in which the time axis is divided into constant-length frames, each made up of an integer multiple of time slots. Cells arrived during a frame are first held in the input buffers, and are then "sorted-and-transmitted" within the next frame. A bandwidth allocation strategy and a cell admission policy are adopted to regulate the traffic to conform to the (r,T) traffic model. A strict sense 100% throughput is proved to be achievable by rearranging the cell transmission orders in each input buffer, and a sorting algorithm is proposed to order the cell transmission. The SSF algorithm guarantees bounded end-to-end delay and delay jitter. It is proved that a perfect matching can be achieved within N(ln N+O(1)) effective moves.

Original languageEnglish (US)
Title of host publicationProceedings - IEEE INFOCOM'99
Subtitle of host publicationThe Conference on Computer Communications - 18th Annual Joint Conference of the IEEE Computer and Communications Societies: The Future is Now
Pages1152-1159
Number of pages8
DOIs
StatePublished - Dec 1 1999
Externally publishedYes
Event18th Annual Joint Conference of the IEEE Computer and Communications Societies: The Future is Now, IEEE INFOCOM'99 - New York, NY, United States
Duration: Mar 21 1991Mar 25 1991

Publication series

NameProceedings - IEEE INFOCOM
Volume3
ISSN (Print)0743-166X

Other

Other18th Annual Joint Conference of the IEEE Computer and Communications Societies: The Future is Now, IEEE INFOCOM'99
CountryUnited States
CityNew York, NY
Period3/21/913/25/91

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Input-queued switching with QoS guarantees'. Together they form a unique fingerprint.

Cite this