TY - GEN
T1 - Interactive exploration of composite items
AU - Amer-Yahia, Sihem
AU - Roy, Senjuti Basu
N1 - Publisher Copyright:
© 2018 Copyright held by the owner/author(s)
PY - 2018
Y1 - 2018
N2 - Data exploration is seeing a renewed interest in our community. With the rise of big data analytics, this area is growing to encompass not only approaches and algorithms to find the next best data items to explore but also interactivity, i.e. accounting for feedback from the data scientist during the exploration. Interactivity is essential to account for evolving needs during the exploration and also customize the discovery process. In this tutorial, we focus on the interactive exploration of Composite Items (CIs). CIs address complex information needs and are prevalent in online shopping where products are bundled together to provide discounts, in travel itinerary recommendation where points of interest in a city are combined into a single travel package, and task assignment in crowdsourcing where persoalized micro-tasks are composed and recommended to workers. CI formation is usually expressed as a constrained optimization problem. For instance, in online shopping, package retrieval can retrieve the cheapest smartphones (optimization objective) with compatible accessories (constraints). Similarly, a city tour must be the most popular and conform to a total time and cost budget. A data scientist interested in exploring a variety of CIs has to repeatedly reformulate optimization problems with new constraints and objectives. In this tutorial, we investigate the applicability of interactive data exploration approaches to CI formation. We will first review CI applications and shapes (15mn). We then discuss three big research questions 60mn): (i) algorithms for CI formation, (ii) modes of exploration for CIs, and (iii) human-in-the-loop CIs. We will conclude with research directions (15mn). The proposed tutorial is timely. It brings together several related efforts and addresses unsolved questions in the emerging area of human-in-the-loop exploration of complex information needs. The tutorial is relevant to the general area of data science and more specifically to Scalable Analytics, Data Mining, Clustering and Knowledge Discovery, Indexing, Query Processing and Optimization, and Crowdsourcing. The technical topics covered are constrained optimization, ranking semantics, clustering, algorithms, and empirical evaluations.
AB - Data exploration is seeing a renewed interest in our community. With the rise of big data analytics, this area is growing to encompass not only approaches and algorithms to find the next best data items to explore but also interactivity, i.e. accounting for feedback from the data scientist during the exploration. Interactivity is essential to account for evolving needs during the exploration and also customize the discovery process. In this tutorial, we focus on the interactive exploration of Composite Items (CIs). CIs address complex information needs and are prevalent in online shopping where products are bundled together to provide discounts, in travel itinerary recommendation where points of interest in a city are combined into a single travel package, and task assignment in crowdsourcing where persoalized micro-tasks are composed and recommended to workers. CI formation is usually expressed as a constrained optimization problem. For instance, in online shopping, package retrieval can retrieve the cheapest smartphones (optimization objective) with compatible accessories (constraints). Similarly, a city tour must be the most popular and conform to a total time and cost budget. A data scientist interested in exploring a variety of CIs has to repeatedly reformulate optimization problems with new constraints and objectives. In this tutorial, we investigate the applicability of interactive data exploration approaches to CI formation. We will first review CI applications and shapes (15mn). We then discuss three big research questions 60mn): (i) algorithms for CI formation, (ii) modes of exploration for CIs, and (iii) human-in-the-loop CIs. We will conclude with research directions (15mn). The proposed tutorial is timely. It brings together several related efforts and addresses unsolved questions in the emerging area of human-in-the-loop exploration of complex information needs. The tutorial is relevant to the general area of data science and more specifically to Scalable Analytics, Data Mining, Clustering and Knowledge Discovery, Indexing, Query Processing and Optimization, and Crowdsourcing. The technical topics covered are constrained optimization, ranking semantics, clustering, algorithms, and empirical evaluations.
UR - http://www.scopus.com/inward/record.url?scp=85064936852&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064936852&partnerID=8YFLogxK
U2 - 10.5441/002/edbt.2018.60
DO - 10.5441/002/edbt.2018.60
M3 - Conference contribution
AN - SCOPUS:85064936852
T3 - Advances in Database Technology - EDBT
SP - 513
EP - 516
BT - Advances in Database Technology - EDBT 2018
A2 - Bohlen, Michael
A2 - Pichler, Reinhard
A2 - May, Norman
A2 - Rahm, Erhard
A2 - Wu, Shan-Hung
A2 - Hose, Katja
PB - OpenProceedings.org
T2 - 21st International Conference on Extending Database Technology, EDBT 2018
Y2 - 26 March 2018 through 29 March 2018
ER -