Abstract
Ion exchange is the most common process for perchlorate removal from waters. Selective ion-exchange resins are widely used for perchlorate removal from waters, but are incinerated after one-time use, making the ion-exchange process incomplete for perchlorate removal. As perchlorate ions are readily biodegradable, direct contact of spent ion-exchange resins with perchlorate-reducing bacteria for its regeneration has been studied recently. In this research, some factors affecting the bioregeneration of perchlorate-laden gel-type anion-exchange resin were investigated. Bioregeneration is a sustainable process when compared to one-time use of resin and disposal by incineration. Batch bioregeneration experiments were performed to determine (a) the effect of initial perchlorate load in the resin, (b) the effect of microbial concentration, and (c) the effect of nitrate load on the degradation of perchlorate in the resin bead. The results of the bioregeneration tests suggested that the bioregeneration process may be controlled by both kinetics and diffusion. Higher perchlorate load in the resin had a positive effect on perchlorate degradation rates, whereas varying microbial concentration did not have a significant effect on perchlorate degradation in gel-type resin. The presence of nitrate suppressed perchlorate degradation initially, but once all nitrate was utilized, perchlorate degradation took place.
Original language | English (US) |
---|---|
Pages (from-to) | 1-11 |
Number of pages | 11 |
Journal | Bioremediation Journal |
Volume | 15 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2011 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- General Environmental Science
Keywords
- bioregeneration
- degradation
- ion exchange
- nitrate
- perchlorate