Investigation of hindbrain activity during active locomotion reveals inhibitory neurons involved in sensorimotor processing

Kristen E. Severi, Urs L. Böhm, Claire Wyart

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


Locomotion in vertebrates relies on motor circuits in the spinal cord receiving inputs from the hindbrain to execute motor commands while dynamically integrating proprioceptive sensory feedback. The spatial organization of the neuronal networks driving locomotion in the hindbrain and role of inhibition has not been extensively investigated. Here, we mapped neuronal activity with single-cell resolution in the hindbrain of restrained transgenic Tg(HuC:GCaMP5G) zebrafish larvae swimming in response to whole-field visual motion. We combined large-scale population calcium imaging in the hindbrain with simultaneous high-speed recording of the moving tail in animals where specific markers label glycinergic inhibitory neurons. We identified cells whose activity preferentially correlates with the visual stimulus or motor activity and used brain registration to compare data across individual larvae. We then morphed calcium imaging data onto the zebrafish brain atlas to compare with known transgenic markers. We report cells localized in the cerebellum whose activity is shut off by the onset of the visual stimulus, suggesting these cells may be constitutively active and silenced during sensorimotor processing. Finally, we discover that the activity of a medial stripe of glycinergic neurons in the domain of expression of the transcription factor engrailed1b is highly correlated with the onset of locomotion. Our efforts provide a high-resolution, open-access dataset for the community by comparing our functional map of the hindbrain to existing open-access atlases and enabling further investigation of this population’s role in locomotion.

Original languageEnglish (US)
Article number13615
JournalScientific reports
Issue number1
StatePublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Investigation of hindbrain activity during active locomotion reveals inhibitory neurons involved in sensorimotor processing'. Together they form a unique fingerprint.

Cite this