Joint channel/network coding for star networks

Christian Koller, Martin Haenggi, Jorg Kliewer, Daniel J. Costello

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Channel coding alone is not sufficient to reliably transmit a message of finite length from a source to one or more destinations as in, e.g., file transfer. To ensure that no data is lost, it must be combined with rateless erasure correcting schemes on a higher layer, such as a time-division multiple access (TDMA) system paired with automatic repeat request (ARQ) or random linear network coding (RLNC). We consider binary channel coding on a binary symmetric channel (BSC) and q-ary RLNC for erasure correction in a star network, where Y sources send messages to each other with the help of a central relay. We focus on finite block lengths and compare the expected throughputs of RLNC and TDMA. For a total message length of K bits, which can be subdivided into blocks of smaller size prior to channel coding, we obtain the channel coding rate and the number of blocks that maximize the expected throughput of both RLNC and TDMA, and we find that TDMA is more throughput-efficient for small K and small q.

Original languageEnglish (US)
Title of host publication2013 IEEE International Symposium on Information Theory, ISIT 2013
Pages3080-3084
Number of pages5
DOIs
StatePublished - Dec 19 2013
Externally publishedYes
Event2013 IEEE International Symposium on Information Theory, ISIT 2013 - Istanbul, Turkey
Duration: Jul 7 2013Jul 12 2013

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Other

Other2013 IEEE International Symposium on Information Theory, ISIT 2013
CountryTurkey
CityIstanbul
Period7/7/137/12/13

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Joint channel/network coding for star networks'. Together they form a unique fingerprint.

Cite this