LawLLM: Law Large Language Model for the US Legal System

Dong Shu, Haoran Zhao, Xukun Liu, David Demeter, Mengnan Du, Yongfeng Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

In the rapidly evolving field of legal analytics, finding relevant cases and accurately predicting judicial outcomes are challenging because of the complexity of legal language, which often includes specialized terminology, complex syntax, and historical context. Moreover, the subtle distinctions between similar and precedent cases require a deep understanding of legal knowledge. Researchers often conflate these concepts, making it difficult to develop specialized techniques to effectively address these nuanced tasks. In this paper, we introduce the Law Large Language Model (LawLLM), a multi-task model specifically designed for the US legal domain to address these challenges. LawLLM excels at Similar Case Retrieval (SCR), Precedent Case Recommendation (PCR), and Legal Judgment Prediction (LJP). By clearly distinguishing between precedent and similar cases, we provide essential clarity, guiding future research in developing specialized strategies for these tasks. We propose customized data preprocessing techniques for each task that transform raw legal data into a trainable format. Furthermore, we also use techniques such as in-context learning (ICL) and advanced information retrieval methods in LawLLM. The evaluation results demonstrate that LawLLM consistently outperforms existing baselines in both zero-shot and few-shot scenarios, offering unparalleled multi-task capabilities and filling critical gaps in the legal domain. Code and data are available at https://github.com/Tizzzzy/Law_LLM.

Original languageEnglish (US)
Title of host publicationCIKM 2024 - Proceedings of the 33rd ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages4882-4889
Number of pages8
ISBN (Electronic)9798400704369
DOIs
StatePublished - Oct 21 2024
Event33rd ACM International Conference on Information and Knowledge Management, CIKM 2024 - Boise, United States
Duration: Oct 21 2024Oct 25 2024

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings
ISSN (Print)2155-0751

Conference

Conference33rd ACM International Conference on Information and Knowledge Management, CIKM 2024
Country/TerritoryUnited States
CityBoise
Period10/21/2410/25/24

All Science Journal Classification (ASJC) codes

  • General Business, Management and Accounting
  • General Decision Sciences

Keywords

  • large language models
  • legal system
  • multitask learning
  • natural language processing

Fingerprint

Dive into the research topics of 'LawLLM: Law Large Language Model for the US Legal System'. Together they form a unique fingerprint.

Cite this