Learning approaches to improve prediction of drug sensitivity in breast cancer patients

Turki Turki, Zhi Wei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

Predicting drug response to cancer disease is an important problem in modern clinical oncology that attracted increasing recent attention from various domains such as computational biology, machine learning, and data mining. Cancer patients respond differently to each cancer therapy owing to disease diversity, genetic factors, and environmental causes. Thus, oncologists aim to identify the effective therapies for cancer patients and avoid adverse drug reactions in patients. By predicting the drug response to cancer, oncologists gain full understanding of the effective treatments on each patient, which leads to better personalized treatment. In this paper, we present three learning approaches to improve the prediction of breast cancer patients' response to chemotherapy drug: the instance selection approach, the oversampling approach, and the hybrid approach. We evaluate the performance of our approaches and compare them against the baseline approach using the Area Under the ROC Curve (AUC) on clinical trial data, in addition to testing the stability of the approaches. Our experimental results show the stability of our approaches giving the highest AUC with statistical significance.

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3314-3320
Number of pages7
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Country/TerritoryUnited States
CityOrlando
Period8/16/168/20/16

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Learning approaches to improve prediction of drug sensitivity in breast cancer patients'. Together they form a unique fingerprint.

Cite this