Learning K-way D-dimensional discrete embedding for hierarchical data visualization and retrieval

Xiaoyuan Liang, Martin Renqiang Min, Hongyu Guo, Guiling Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Traditional embedding approaches associate a real-valued embedding vector with each symbol or data point, which is equivalent to applying a linear transformation to “one-hot” encoding of discrete symbols or data objects. Despite simplicity, these methods generate storage-inefficient representations and fail to effectively encode the internal semantic structure of data, especially when the number of symbols or data points and the dimensionality of the real-valued embedding vectors are large. In this paper, we propose a regularized autoencoder framework to learn compact Hierarchical K-way D-dimensional (HKD) discrete embedding of symbols or data points, aiming at capturing essential semantic structures of data. Experimental results on synthetic and real-world datasets show that our proposed HKD embedding can effectively reveal the semantic structure of data via hierarchical data visualization and greatly reduce the search space of nearest neighbor retrieval while preserving high accuracy.

Original languageEnglish (US)
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2966-2972
Number of pages7
ISBN (Electronic)9780999241141
DOIs
StatePublished - 2019
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: Aug 10 2019Aug 16 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
CountryChina
CityMacao
Period8/10/198/16/19

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint Dive into the research topics of 'Learning K-way D-dimensional discrete embedding for hierarchical data visualization and retrieval'. Together they form a unique fingerprint.

Cite this