TY - JOUR
T1 - LiveDroid
T2 - Identifying and preserving mobile app state in volatile runtime environments
AU - Farooq, Umar
AU - Zhao, Zhijia
AU - Sridharan, Manu
AU - Neamtiu, Iulian
N1 - Publisher Copyright:
© 2020 Owner/Author.
PY - 2020/11/13
Y1 - 2020/11/13
N2 - Mobile operating systems, especially Android, expose apps to a volatile runtime environment. The app state that reflects past user interaction and system environment updates (e.g., battery status changes) can be destroyed implicitly, in response to runtime configuration changes (e.g., screen rotations) or memory pressure. Developers are therefore responsible for identifying app state affected by volatility and preserving it across app lifecycles. When handled inappropriately, the app may lose state or end up in an inconsistent state after a runtime configuration change or when users return to the app. To free developers from this tedious and error-prone task, we propose a systematic solution, LiveDroid, which precisely identifies the necessary part of the app state that needs to be preserved across app lifecycles, and automatically saves and restores it. LiveDroid consists of: (i) a static analyzer that reasons about app source code and resource files to pinpoint the program variables and GUI properties that represent the necessary app state, and (ii) a runtime system that manages the state saving and recovering. We implemented LiveDroid as a plugin in Android Studio and a patching tool for APKs. Our evaluation shows that LiveDroid can be successfully applied to 966 Android apps. A focused study with 36 Android apps shows that LiveDroid identifies app state much more precisely than an existing solution that includes all mutable program variables but ignores GUI properties. As a result, on average, LiveDroid is able to reduce the costs of state saving and restoring by 16.6X (1.7X - 141.1X) and 9.5X (1.1X - 43.8X), respectively. Furthermore, compared with the manual state handling performed by developers, our analysis reveals a set of 46 issues due to incomplete state saving/restoring, all of which can be successfully eliminated by LiveDroid.
AB - Mobile operating systems, especially Android, expose apps to a volatile runtime environment. The app state that reflects past user interaction and system environment updates (e.g., battery status changes) can be destroyed implicitly, in response to runtime configuration changes (e.g., screen rotations) or memory pressure. Developers are therefore responsible for identifying app state affected by volatility and preserving it across app lifecycles. When handled inappropriately, the app may lose state or end up in an inconsistent state after a runtime configuration change or when users return to the app. To free developers from this tedious and error-prone task, we propose a systematic solution, LiveDroid, which precisely identifies the necessary part of the app state that needs to be preserved across app lifecycles, and automatically saves and restores it. LiveDroid consists of: (i) a static analyzer that reasons about app source code and resource files to pinpoint the program variables and GUI properties that represent the necessary app state, and (ii) a runtime system that manages the state saving and recovering. We implemented LiveDroid as a plugin in Android Studio and a patching tool for APKs. Our evaluation shows that LiveDroid can be successfully applied to 966 Android apps. A focused study with 36 Android apps shows that LiveDroid identifies app state much more precisely than an existing solution that includes all mutable program variables but ignores GUI properties. As a result, on average, LiveDroid is able to reduce the costs of state saving and restoring by 16.6X (1.7X - 141.1X) and 9.5X (1.1X - 43.8X), respectively. Furthermore, compared with the manual state handling performed by developers, our analysis reveals a set of 46 issues due to incomplete state saving/restoring, all of which can be successfully eliminated by LiveDroid.
KW - Android
KW - Runtime Configuration Change
KW - Software Restart
KW - Static Analysis
UR - http://www.scopus.com/inward/record.url?scp=85097583091&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097583091&partnerID=8YFLogxK
U2 - 10.1145/3428228
DO - 10.1145/3428228
M3 - Article
AN - SCOPUS:85097583091
SN - 2475-1421
VL - 4
JO - Proceedings of the ACM on Programming Languages
JF - Proceedings of the ACM on Programming Languages
IS - OOPSLA
M1 - 160
ER -