TY - JOUR
T1 - Mass balance model for sustainable phosphorus recovery in a US wastewater treatment plant
AU - Venkatesan, Arjun K.
AU - Hamdan, Abdul Hakeem M.
AU - Chavez, Vanessa M.
AU - Brown, Jasmine D.
AU - Halden, Rolf U.
N1 - Publisher Copyright:
© American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. 5585 Guilford Rd., Madison, WI 53711 USA.
PY - 2016
Y1 - 2016
N2 - In response to limited phosphorus (P) reserves worldwide, several countries have demonstrated the prospect of recovering significant amounts of P from wastewater treatment plants (WWTPs). This technique uses enhanced biological P removal (EBPR) to concentrate P in sludge followed by chemical precipitation of P as struvite, a usable phosphate mineral. The present study models the feasibility of this enhanced removal and recovery technique in a WWTP in Arizona with design parameters typical of infrastructure in the United States. A mass balance was performed for existing treatment processes and modifications proposed to estimate the quantity of P that could be recovered under current and future flow conditions. Modeling results show that about 71 to 96% of the P being lost potentially could be recovered as struvite. About 491 ± 64 t yr-1 of struvite may be recovered after process modification, which corresponds to $150,000 ± $20,000 yr-1 in P sales to fertilizer industries. The process was projected to be economically feasible, with a payback period of 45 ± 30 yr in the studied WWTP and a much shorter duration of 3 ± 1 yr for WWTPs already using an EBPR process. Furthermore, modeling results suggest that P recovery can improve the quality of biosolids by favorably reducing the P:N ratio. Implementation of this strategy at US WWTPs may increase national security by reducing dependence of limited P resources. Considering all aspects of the recovery process with respect to environmental, economic, and social implications, the examined technique is concluded to represent a cost-attractive and sustainable method for P management in US WWTPs.
AB - In response to limited phosphorus (P) reserves worldwide, several countries have demonstrated the prospect of recovering significant amounts of P from wastewater treatment plants (WWTPs). This technique uses enhanced biological P removal (EBPR) to concentrate P in sludge followed by chemical precipitation of P as struvite, a usable phosphate mineral. The present study models the feasibility of this enhanced removal and recovery technique in a WWTP in Arizona with design parameters typical of infrastructure in the United States. A mass balance was performed for existing treatment processes and modifications proposed to estimate the quantity of P that could be recovered under current and future flow conditions. Modeling results show that about 71 to 96% of the P being lost potentially could be recovered as struvite. About 491 ± 64 t yr-1 of struvite may be recovered after process modification, which corresponds to $150,000 ± $20,000 yr-1 in P sales to fertilizer industries. The process was projected to be economically feasible, with a payback period of 45 ± 30 yr in the studied WWTP and a much shorter duration of 3 ± 1 yr for WWTPs already using an EBPR process. Furthermore, modeling results suggest that P recovery can improve the quality of biosolids by favorably reducing the P:N ratio. Implementation of this strategy at US WWTPs may increase national security by reducing dependence of limited P resources. Considering all aspects of the recovery process with respect to environmental, economic, and social implications, the examined technique is concluded to represent a cost-attractive and sustainable method for P management in US WWTPs.
UR - http://www.scopus.com/inward/record.url?scp=84957601657&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84957601657&partnerID=8YFLogxK
U2 - 10.2134/jeq2014.11.0504
DO - 10.2134/jeq2014.11.0504
M3 - Article
C2 - 26828163
AN - SCOPUS:84957601657
SN - 0047-2425
VL - 45
SP - 84
EP - 89
JO - Journal of Environmental Quality
JF - Journal of Environmental Quality
IS - 1
ER -