TY - JOUR
T1 - Maximizing energy transfer in vibrofluidized granular systems
AU - Windows-Yule, C. R.K.
AU - Rosato, A. D.
AU - Parker, D. J.
AU - Thornton, A. R.
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/5/22
Y1 - 2015/5/22
N2 - Using discrete particle simulations validated by experimental data acquired using the positron emission particle tracking technique, we study the efficiency of energy transfer from a vibrating wall to a system of discrete, macroscopic particles. We demonstrate that even for a fixed input energy from the wall, energy conveyed to the granular system under excitation may vary significantly dependent on the frequency and amplitude of the driving oscillations. We investigate the manner in which the efficiency with which energy is transferred to the system depends on the system variables and determine the key control parameters governing the optimization of this energy transfer. A mechanism capable of explaining our results is proposed, and the implications of our findings in the research field of granular dynamics as well as their possible utilization in industrial applications are discussed.
AB - Using discrete particle simulations validated by experimental data acquired using the positron emission particle tracking technique, we study the efficiency of energy transfer from a vibrating wall to a system of discrete, macroscopic particles. We demonstrate that even for a fixed input energy from the wall, energy conveyed to the granular system under excitation may vary significantly dependent on the frequency and amplitude of the driving oscillations. We investigate the manner in which the efficiency with which energy is transferred to the system depends on the system variables and determine the key control parameters governing the optimization of this energy transfer. A mechanism capable of explaining our results is proposed, and the implications of our findings in the research field of granular dynamics as well as their possible utilization in industrial applications are discussed.
UR - http://www.scopus.com/inward/record.url?scp=84930193093&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930193093&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.91.052203
DO - 10.1103/PhysRevE.91.052203
M3 - Article
AN - SCOPUS:84930193093
SN - 1539-3755
VL - 91
JO - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
JF - Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
IS - 5
M1 - 052203
ER -