TY - GEN
T1 - Maximizing throughput in flow shop real-time scheduling
AU - Yamin, Lior Ben
AU - Li, Jing
AU - Sarpatwar, Kanthi
AU - Schieber, Baruch
AU - Shachnai, Hadas
N1 - Publisher Copyright:
© 2020 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. All rights reserved.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - We consider scheduling real-time jobs in the classic flow shop model. The input is a set of n jobs, each consisting of m segments to be processed on m machines in the specified order, such that segment Ii of a job can start processing on machine Mi only after segment Ii−1 of the same job completed processing on machine Mi−1, for 2 ≤ i ≤ m. Each job also has a release time, a due date, and a weight. The objective is to maximize the throughput (or, profit) of the n jobs, i.e., to find a subset of the jobs that have the maximum total weight and can complete processing on the m machines within their time windows. This problem has numerous real-life applications ranging from manufacturing to cloud and embedded computing platforms, already in the special case where m = 2. Previous work in the flow shop model has focused on makespan, flow time, or tardiness objectives. However, little is known for the flow shop model in the real-time setting. In this work, we give the first nontrivial results for this problem and present a pseudo-polynomial time (2m + 1)-approximation algorithm for the problem on m ≥ 2 machines, where m is a constant. This ratio is essentially tight due to a hardness result of Ω(m/logm) for the approximation ratio. We further give a polynomial-time algorithm for the two-machine case, with an approximation ratio of (9 + ε) where ε = O(1/n). We obtain better bounds for some restricted subclasses of inputs with two machines. To the best of our knowledge, this fundamental problem of throughput maximization in the flow shop scheduling model is studied here for the first time.
AB - We consider scheduling real-time jobs in the classic flow shop model. The input is a set of n jobs, each consisting of m segments to be processed on m machines in the specified order, such that segment Ii of a job can start processing on machine Mi only after segment Ii−1 of the same job completed processing on machine Mi−1, for 2 ≤ i ≤ m. Each job also has a release time, a due date, and a weight. The objective is to maximize the throughput (or, profit) of the n jobs, i.e., to find a subset of the jobs that have the maximum total weight and can complete processing on the m machines within their time windows. This problem has numerous real-life applications ranging from manufacturing to cloud and embedded computing platforms, already in the special case where m = 2. Previous work in the flow shop model has focused on makespan, flow time, or tardiness objectives. However, little is known for the flow shop model in the real-time setting. In this work, we give the first nontrivial results for this problem and present a pseudo-polynomial time (2m + 1)-approximation algorithm for the problem on m ≥ 2 machines, where m is a constant. This ratio is essentially tight due to a hardness result of Ω(m/logm) for the approximation ratio. We further give a polynomial-time algorithm for the two-machine case, with an approximation ratio of (9 + ε) where ε = O(1/n). We obtain better bounds for some restricted subclasses of inputs with two machines. To the best of our knowledge, this fundamental problem of throughput maximization in the flow shop scheduling model is studied here for the first time.
KW - Approximation algorithms
KW - Flow shop
KW - Real-time scheduling
KW - Throughput maximization
UR - http://www.scopus.com/inward/record.url?scp=85091292213&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85091292213&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.APPROX/RANDOM.2020.48
DO - 10.4230/LIPIcs.APPROX/RANDOM.2020.48
M3 - Conference contribution
AN - SCOPUS:85091292213
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2020
A2 - Byrka, Jaroslaw
A2 - Meka, Raghu
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 23rd International Conference on Approximation Algorithms for Combinatorial Optimization Problems and 24th International Conference on Randomization and Computation, APPROX/RANDOM 2020
Y2 - 17 August 2020 through 19 August 2020
ER -